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Introduction.

This report documents the author's research on methodology forlthe
quantitative justification of time-sequential fire-support allocation
procedureg. Carl von Clausewitz (1780-1831), the influential 1952'century
German military philosopher, said (see p. 191 of [8]) that if theory caused
a more critical study of war, then it had achieved its purpose. ToQay in

the 20!:-1—l century this is particularly true within the context of military

operations research for defense planning. General G. I. Pokrovsky (U.S.S.R.)
has gimilarly stressed (see pp. 12~13 of [27]) the importance of scientific
1nvestigat16n of military principles. We will accordingly 1nvesti§ate the
principles of fire-support allocation by the consideration 9£ some idealized
problems (see [40}, [48]). Although these problemg are probably t;o simple

to be taken literally, such analytic investigations of the optimization oi fire-
suoport allocation may be used to (1) guide higher resclution studies, (2)
identify cause-effect relationships between the structure of optimal allocation
policies and modelling assumptions, and (3) test the capabilities of proposed
computational methods for time-sequential fire-support allocation optimization
problems (for exampY?, Lagrange dynamic programming [29] for discrete-time
versions of such prcolems (see also [22], [26], [47])).

The determination of optimal target allocation strategies for supporting
weapon systems+ is a major problem of contemporary military operations research.
This problam freruently arises, for example, in defense planning studies such
as the evaluation of propoged fire-support systems or fire-support mixes (see

[24])*+. The problem is algo of interest to the military tactician so that he

+See [48] for a brief discussion between a "primary" weapon system (or infantry)
and a "supporting' weapon system.

++See Appendix A for a further discussion.
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may have a clearer understanding of the circumstances under which enemy

infantry should be engaged by a supporring weapon system (such as artillery)

and those under which "counter-battery" fire is to be preferred. Such tactical .
allocation problems are of particular relevance in light of the Navy miésion )

of fire support (both by ship gunfire and by carrier-based air). Another
important related question for defense planners is, "What are appropriate missions
over the course of a campaign for tactical air power?" The answer to this ques-
tion has far-reaching implications for Navy air forces (both carrier-based and
land-based) (and, of course, the Air Force). Recently, the USAF Studies and
Analysis Group has been using quantitative methodology [47] in trying to

answer such questioms.

There is interest at present in the Wavy and USMC on various aspects
of fire-support allocation and evaluation. Additionally, the problem of
optimal time-sequential fire-support strategies is related to campaign analysis
and optimal campaign strategies. Currently a research project on campaign
analysis (sponscred by OP-96) is underway at NPS, and we have given this work
consideration in performing the raesearch at hand.

In the research reported here on the principles of optimal time-sequential
fire-support allocation we have built ubon the previous regearch of the investi-
gator [34]-[38] who has studied optimal time-sequential tactics for (1) distri-
bution of fire over enemy target types, (2) selection of target type at which
to fire, and (3) regulation of firing rate. By considering several combat
scenarios, ingights have been gained into such important questions as:

(1) How should supporting fires by distributed over enemy targets?
(2) How should targets be selected?
(3) Do target priorities change over time? -

(4) How do force levels affect the optimal time-sequential fire-
support policy?
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(5)

(6)

()

(8)
€)

(10)

How do the number of target types and the nature of combat
attrition processes affect the optimal time-sequential fire-
support policy?

How does the nature of the planning horizon (i.e., battle
termiration conditions) affect the optimal time-gequential
fire-suppcest policy?

What is the optimal tire-support mix and how is this affected
by tactics?

What are the effects of logistics constraints on such policies?

How do the uncertainty and confusion of combat affect optimal
time-sequential fire-support allocation strategies?

How do command and control capabilities affect the optimal
time~sequential fire-gupport policy?

In trying to answer the above questions we have given consideration to the

following factors:

(1)

(2)
(3)
(4)
(5)
(6)
)
(8)

combatant objectives (form of criterion functional and valuation
of surviving forces),

dynamics of the combat attrition process,
weapon system performance characteristics,
termination conditions of conilict,

force strengths and composition,

type of attrition process,

effects of resource constraints,

range capabilities of weapon systems.

Thue, the determination of optimal target allocation strategiecs for

supporting weapon systems is a major problem of contemporary military operations

research. Accordingly, the objectives of this research are to determine optimal

fire-support strategies in a time-sequential fashion over the course of combat

for several situations of tactical interest and to study the dependence of these

strategies on_the nature of the combat model. In this work consideration is
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given to the dynamics of combat.+ We emphasize the development of explicit
expressions for the optimai fire-aupport policies here. Such results are
important not only for their own sakef* but also for testing the capabilities
of proposed computational methods (for example, Lagrange dynamic programming
[29] for discrete-time versions of such problems or the Lulejian successive-
approximation methodology [23], [26]).

In the research reported hare we have continued our study of the
effects of modelling assumptions on the structure of optiﬁal time~-sequential
allocation policies (see [34]-[44]). It is the investigator's opinion (based
on his knowledge of both the open literature and participation in the symposium
on the "State-of-the-Art of Mathematics in Combat Models" (held at General
Research Corporation 14-15 June 1973); that this topic is at present imperfectly
understood by analysts. We feel that an important aspect of our research has
been its continuity of effort: the author has Leen considering quantitative
methods for optimizing tactical decisions for five years now, and tais has
provided valuable perspective .or tlie current research on optimal time-sequential
fire-support strategies. The author has also profitted from numerous discussions
with military officers (both students at NPSAand military analysts) on the topic

of optimizing tactical decisions.

2. LKkegearch Objectives

The general objective of this research is to develop combat attrition

models and optimization techniques to extend the state-of-the-art for the

*This should be contrasted with essentially all the work reviewed in [24] in
which no consideration is given to the evolution of the course of battle.

+-'NOne can clearly see the dependence of the stru:ture of the optimal time-
sequential allocation policy on model form and model parameters.




;_.w;;?.;.a-‘u.;-,,'«“’ajdb ANHER TR

)

¥ Targ Lt

AN "
PR R 57 TN A,

s

%

T e D ek e,

2.

SR L ot

£ er

y
7
E;
i
9
)

<

determination nf optimal time-sequential fire-support str.tegies in various
tactical scenarios. The specific objectives of the initial phase of this -.
research’ are: (1) to determine the optimal time-sequential fire~-support
policies in several situations of tactical interest, {2) to study the dependence
of these policies on the functional form of the model for combat dynamics, (3)
to determine the sensitivity of these policies to the functional form of the
criterion functional, and (4) to develop methodology for the determination of
optimal time-sequential fire-support policies when there are different combat

dynamics in different "phases" of a battle.

3. Review of Previous Work

A rather comprehensive review of combat modelling theories (in pafficular,

'
L]

Lanchester-type models of warfare) and related optimization thecries for tée
exam ‘nation of time-gequential tactical allocation problems is to be found 1n
the investigator's 1972 NPS technical report (see pp. 21-32 of [35] (see also
[38])). 1In this section we will give a brief overview of past work on oétimizing
fire-support allocations. More detailed reviews (as related to the subject
matter of the appendix in question) are to be found in the appendices of this
report.

The determination of op*imal time-sequeutial fire-distribution strategies
for supporting weapon systems is a major problem of contemporary military
operations regearch. Early work was done on this problem at RAND in the late
1940'e 2nd early 1950's (see [12]) and elsewhere (see [1]). Today the problem
of optimal rir-war strategies is being extensively studied by a number of
organizations (see, for example, [7], [14], [22], [30], [47]). This problem
was extensively discussed in the workshop on optimization techniques and

combat applications at the 1973 Conference on the State-of-the-Art of Mathematics

. S ki
LAY va




in Combat Models (see [28]) at which the principal investigator was an invited
speaker,

Rufus Isaacs considered Arnold Mengel's "War of Attrition and Attack"
(see [12]) in Isaacs' now classic book on differential games [18]. Discrete-
time versions of this problem of the determination of optimal "air-war"
strategics (see also {2}, [36], [37]) have been considered by a number of workers
as time-sequential combat games [3], [4], [10] (see also (5], [9]). Armusther
related problem was considered by Weiss [48], who studied the optimal selection
of targets for engagement by a supporting weapon system.f More recently, Kawara
[20] has studied optimal time-gsequential fire-distribution strategies for
supporting weapon systems in an attack scenario which is a varfation of the
model considered by Weiss [48]. Other recent work has considered various con-
ceptual and computational aspects of time-sequential combat ga=es [29), [30],
[31]. References to the numerous contributions in this field of the principa!?

investigator are to be found in [38] (see also [42], [42)).

4. Research Approach

Our research approach has been to combine Lanchester-type models of
warfare with generalized control theory (i.e., optimization theory for dynamic
systems (see [16], [17])). This research program has been described in more
detail elsewhere [35], [36]. In the iaitial phase of research reported here
we have éxamined a sequence of one-sidedf+ time-gequential allocation problems
in order to study the dependence of the oprimal fire-support policy on the

nature of the combat model and on the quantification of combatant objectives.

+See [44], however, for a justification of the optimality of strategies deter-
mined by Weiss [48]. A general solution algorithm is also presented in this
paper [44].

1"i‘In other words, only one of the combatants is free to choose his time-

sequential fire-support allocation policy.




Many of these problems represent various versions of the same basic fire-
support situation, and many of these optimal control problems have been
solved in de:ail.? The structure of optimsl time-sequential fire-support
allocation strategies has been gctudied by considering the solutismns for
specific optimization problems and comparing and contresiing these. In this
work we have ugsed existing methodologies for the modelling of supporting
weapon systems {see [32], [45]) (also pp. 141-162 of [6])).

In future work, we would extend these results to two-sided optimization
problems (i.e., time-sequential combat ga-eo\.ff Additionally, the effects
of the information structure (e.g., whether or not enemy force levels are
modelled as being knowm with certainty) and of modelliing "breakpoints" (see
(151, [33], [38), (49]) on optimal time-sequential fire-support strategies

gshould be examined in the future.

5. Guided Tour of the Appendices

The organization of this report is to discuss results in general terms
in the main body and to leave supporting details for the appendices. Accord-
ingly, we summarize in this section the work which is contained in the appen~
dices and explain why this work was done. The results reported here may be
congidered to be extenrcions of our previous work on optimal time-sequential
fire~distribution strategies [34]-[38]. Moreover, the work at hand lays the
foundation for more extensive work on the quantitative analysis of time~
sequential fire-support allocation and on applications of generalized control ;

theory to problems of military operations research.

fSuch results are useful for evaluating computational algorithms (see above).

+1~R. Isaacs [19] has emphasized, however, the difficulties attendant with the
transition from one-sided to two-sided dynamic optimization problems.
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In Appendix A we consider a sequence of simplified models in order
to study the effect of the nature of dynamic combat interactions on optimal .
time-sequential fire-support allocation policies-and gain insights into
their structure. First we consider a general one-sided,? time-sequential
fire~support allocation problem, and then we consider various particulariza-
tions (in all, ten) of this general problem. These time-sequential fire-
support allocation problems are golved by applying the mathematical theory of
optimal control. In this work we emphasize develcping "closed-form" solutions
in order to he able to conveniently see the structure of optimal fire-support
policies without spending the time and effort of extensive numerical deter-
minations. Moreover, part of our research has been to determine idealized
problems that are still militarily realistic but yet amenable to (at least
partially) "clesed-form" solution. By contrasting tue structures of the
optimal time-sequential fire-:-pport policies for these various problems we
study the dependence of these policies on the functional form of the model
of combat dynamics. Additionally, we consider the effect of suppression
(see, for example, [21]) on such optimal fire-support policies. We review
different ways in which to model suppressive effects within the context
of Lanchester-type formulations and briefly consider two fire-support allo-
cation problems with suppressive effects included in the model of combat i
dynamics. |

The research reported in Appendix A was undertaken to develop an
understanding of the dependence of optimal fire-support allocation policies
on the nature of the combat model (i.e., the mathematical form of the model

for combat attrition). We were interested in trying to provide insights into

iOnly one of the two combatants is free to choose his time-sequential fire-
support policy.




the answers to the following questions:

(1) How does the tread of battle affect optimal fire-support
allocation? Kow do target priorities for fire-support systems
change over the course of battle? Are they affected by the
nature of combat operations (i.e., whether defensive or offep-
sive, whether there are replacemeats or not, etc.)?

(2) 1s optimal fire-support allocation sensitive to the nature of
the target acquisition process? Will changes in target acqui-
sition capability (in particular, new hardwsre developments
like a laser rangefinder) necessitate changes in fire-support
2llocation Goctrine?

(3) How should the allocation of our fire-support systems be
affected by the presence of enemy fire-support systems?

Previous research review dy McNicholas and Crane [24] indicated that such allo-
cations have been largely judgmentally handled, and we wanted to establish a
quantitative basis for such decisions. In particular, we wanted to show that
the course of combat strongly influences the effectiveness of fire-support
allocations anc also that different situations require different allocation
rules for maximum effectiveness (i.e., there is no "universal" fire-support
allocation rule).

In Appendix B we examine the dependence of the structure of optimal
time-sequential fire-support allocation policies on the quantification of
military objectives by considering three specific problems, each corresponaing
to a different quantification of objectives (i.e., criterion functional). The
three criterion functionals that we consider are as follows: (I) a weighted
average of the force ratios of apposing numbers of infantry in the two infantry
combat zones, (II) the difference between the total military worths (computed
using linear utilities) of the surviving X and Y forces at the end of the
"approach to contact," and (III) the ratio of total military worths (again
computed using linear utilities) of the surviving X and Y forces. We determine

the optimal time-sequential allocation of supporting fires during the "approach




to contact" of friendly infantry against enemy defensive positions for each
one-gided combat optimization problem. The problems are all nonconvex, and
£ local optima are a particular difficulty in one of them. Each problem is
solved, and their solutiong are contrasted in order to see how the optimal

fire-support allocation policy is influenced by the quantification of military ~

objectives. Additionally, we discuss possible future research suggested by the

work reported in this appendix.

The research reported in Appendix B was undertaken to determine the
sengitivity of the optimal time-sequential fire~support allocation policy
to the quantification of military objectives. This aspect of fire-support
allocation had apparently never been quantitatively examined. The only other
systematic examinations of the influences of the criterion function on the
structure of optimal time-sequential fire-distribution policies known to the
author are his own [34]-[43]. Furthermore, Pugh and Mayberry [31] have
suggested+ that an appropriate payoff, or objective function (in our terminology,

criterion functional), for the quantitative evaluation of combat strategies is

the loss ratio (calculated possibly using weighting factors for heterogenous
forces). In Appendix B we examine to what extent these criteria are in fact
equivalent.

In Appendix C we briefly consider optimal time-sequential fire-support
allocatioca policies when there are different combat dynamics (i.e., Lanchester-
type equations) in different "phases" of a battle. Such a situation occurs

when a combat unit becomes "ineffective" through reduction in strength, i.e.,

. the unit reaches its so-called "breakpoint" (see [15] and [33]). We investigate

how optimal time-sequential fire~support allocation policies are modified by

i fHowever, Pugh and Mayberry [31] do not explore the consequences of various
functional forms for the criterion functional.

10
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uni’ "breskpoints" being considered. The work reported in Appendix C is more
exploratory than that reported in the other two appendices.
The research reported in Appeadix C was undertsken to see how optimal

fire-support allocation policies are affected by such models of combat unit

]
1

degradation. In all the author's previous time-sequential allocation research,
unit breakpoints were not considered. Purthermore, the author is not aware
of any contemporary research that considers this factor. Our purpose was to
see if the nature of an optimal policy is modified by such an enrichment in

military detail.

6. Summary of Regearch Findings

Here we summarize our research results. We have (at least partially)
accomplished the tasks (a) and (b) that were suggested for future research
on p. 6 of our previous report [37]. Results are organized under the following
headings:
(1) solution methodology for t;me-sequential combat problems,

(2) 1insights gained into optimal time-sequential fire-support
allocation policies,

(3) implications for defense planning.
Items (2) and (3) differ in that the latter is a management-oriented digest of
practical implications of our research, while the former is oriented towards
a technical audience. Further amplification of'result; anc conclusions is
to be found in the appendices.

a. Solution Methodology for Time-Sequential Combat Problems

Our research has produced the following results on solution methodology for
time-sequential combat allocation procblems. Specifically, we have accomplished

the following:

11
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demonstrated that judicious choice of an approximation to the
combat dynamics leads to appreciable simplification in the
optimal fire-suppnrt allocation policy,

concluded that simplified versions of a complex problem should
be initially considered in order to develop insight into the
structure of the optimal policy [such simplified problems
provide a point of departure for understancing mcce complex
problems (enriched in military details)],

showed that global considerations (:.e., value of criterion
functionel) must be used in such nonconvex optimal control
problems in order tc determine the optimal policy [local
necessary conditions of optimality, in themselves, were
inadequate to determine optimal policyj,

concluded that ccmputational aethods for complex problems
must give consjderation to structural properties of optimal
policies in idealized versions like those considered in this
report,

illustrated how optimal control theory is applied to one-sided
combat optimization problems with different combat dynamics

in different "phases" of combat, denoted as "time-phased"
combat [this is the first time such a model has been considered
in military operations research].

b. Insights Gained Into Optimal Time-Sequential Fire-Support Allocation
Policies

Based on our study of the optimization of time-sequential fire-support

allocations using modern optimal control theory, we have reached the following

conclusions:

(1)

the structure of optimal time-sequential fire-support allocation
policies depends on the following factors:

(a) decision criterionm,
(b) combat operations model,
(c) battle termination/unit breakpoint model;

the dependence is complex; future research should concentrate
on simplified models of tactical interest to explore how the
optimal policy depends on these factors; research is also
needed on methodology for integrating such theoretical results
into practical Navy and DOD planning studies,

12
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(2) optimal time sequential fire-support allocation policies

are quite sensitive to the nature of the model of combat
dynamics; based on our study of a sequence of simplified
time-gequential fire-support allocation problems, we conclude

that:
(a)

(t)

(c)

(d)

(e)

(8)

(h)

an optimal time-gequential fire-support allocation
policy depends on the dynamjcs of combat and target
priorities evolve dynamically over the course of
battle,

the nature of the (Lanchester-type) target attrition
process for a supporting weapon system has a major
influence on the structure of the optimal fire-

support policy as do those for other force inter-
actions,

the optimal time-sequential fire-support allocation
policy for an attack (approach to contact) is different
in structure from that for the defense of such an
attack,

a "linear-law" attrition process from a supporting
weapon system against enemy target types may lead to
supporting fires being divided between enemy targets
in an optimal policy,

a "square-law" attrition process always leads to
concentration of fire on a single target type as the
optimal policy,

judicious choice (j.e., valuation in direct propurtion
to their rate of restroying friendly value) of the value
assigned to enemy survivors (computed according to linear
utilities) leads to a simple fire-support allocation
policy that is alsc intuitively appealing; this policy
remains optimal even when there are temporal variations
in the effectiveness of enemy fire,

simple "nearly optimal" fire-~support policies may be
developed through judicious approximations to the combat
attrition process,

if suppression is a linear function of the kill rate of
the supporting weapon system, it has no effect on the
optimal fire-support policy when enemy survivors are
valued in direct proportion to their rate of destroying
friendly value (i.e., the cptimal policy is not changed
if ¢he suppressive effects are excluded from the model).

13
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(4)

N

optimal time-sequential fire-support policies are also quite
sengitive to the criterion functional (i.e., decision criterion)
chosen; based on our study of several time-sequential fire-
support allocation problems (all with the same combat dynamics
but different criterion functionals), we conclude that the
optimal fire-support policy for a particular attack scenario

is significantly influenced by the quantification of military
objectiv:s and that the most important planning decision for

a side is whether it will seek to attain an "overall" or a
"local" advantage from its combat operations; we found that:

(a) the splitting of supporting fires between two enemy
forcee in an optimal policy {i.e., the optimality of
singular subarcs) depends on whether che terminal
payoff reflects the objective of attaining an "overall"
military advantage or a "local" one,

{b) switching times for changes in the ranking of target
priorities are different (sometimes significantly)
when the decision criterion is the difference and the
ratio of the military worths (computed according to
linear u<ilities) of total infantry survivors.

optimal time-sequential fire-support allocation policies are
sensitive to the modelling of unit breakpoints; the optimal
policy may be significantly changed in structure by adding a
nonzero force-level breakpoirt into the combat model; such
optimal control problems are much more difficult to solve
than problems without unit breakpoints (i.e., only force-
level constraints).

Implications for Defense Planning

1)

In our research reported here we have studied idealizations of allocation
structures cthat commonly occur in defense planning studies. After studying
these idealizations in order to gain insight into the structure of optimal
fire-support allocation strategies in the complex real-world problem, we have
reached the following conclusions concerning considerations that should be
brought to the attention of defense planners. These vresults should be kept

in mind by practitioners who perform more detailed computer similation studies.

The combat optimization problem should be thought of as
consisting of three parts:

(1) combatant objectives,

(i1) coanflict termination conditionms,
(iii) combat dynamics.

14




(2)

3)

(%)

(5)

(6)

Optimal firz-support allocation strategies depend on all
three of ti.e above. More basic scientific research should
be done on all three, particularly the first two.

The time-sequential nature of target effects from fire support
have a s:ignificant effect upon the optimal fire-support allo~
cation <trategies. Moreover, other combat interactions (e.g.,
friendlv ground forces with enemy ground forces) also influence
the optimal policy.

It may be quite dangerous to generalize optimal fire-gupport
strategies developed for specific problems. At present, more
research is needed on specific problems in order to develop
an understanding of the qualifications that may be necessary
to make about specific study results.

The quantification of combatant objectives does affect optimal

fire-support strategies. The most important planning decision

is whether to seek a "local" military advantage or an "overall"
one.

Unit breakpoints do affect (both directly and also indirectly)
optimal fire-support strategies. More scientific work is
needed on determining the relationship between unit effective-
ness and unit strength.

Optimal fire-support strategies must be based on ground-
operations objectives. Suboptimization results when this is
not done. This suboptimization may be a serious problem,
since it could lead to, for example, destroying all the enemy
fire-support units but losing the overall ground campaign.

7. Suggested Future Research Tasks

After performing the research documented in this report, we feel that

the current state-of-the-art for applying differential-game/optimal-control

theory to time-sequential combat allocation problems is such that much more

significant results may be readily obtained in the future. Moreover, our

previous research provides valuable perspective for identifying what appears

to be the most important research tasks to be considered next. In our opinion

the most important task is to continue to examine the influence of objectives

on optimal fire-support strategies. Another important task is to study the

structure of optimal air-war strategies.

15
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Based on our past research experience we feel that there is much to

be accomplished in the future. Specifically, we suggest the following as

future research tasks:

¢))

(2)

3)

Further study of how optimal time-sequential fire-support
allocation strategies depend on the nature of dynamic combat
interactions. Preliminary results for a sequence of one-
sided’ allocation problems were given in this report (see
Appendix A). We would extend these results that have aiready
yielded important insights into optimal fire-support allocation
policies. Details remain to be worked out for a number of
allocat .on problems (see Appendix A). In particular, we would
further consider the modelling of suppressive effects of
supporting weapons in such work, with particular emphasis on
determining how such effects influence the opcimal time-
sequential allocation of supporting weapons.

Further study of the dependence of the structure of optimal
time-sequential fire-support allocation policies on the quan-
tification of military objectives. Based on our work documented
in this report we conclude that more work needs to be done on
the identification of criteria for making tactical decisions

and on the quantification of such criteria. Our work indicates
that the structure of optimal policies may be significantly
affected by the quantification of military objectives. We

would consider additional criterion functionals and would
determine the corresponding optimal policy for each of these,

as we have done in Appendix B (see discussion of proposed

future research in Appendix B). Also, some further computational
work remains to be done on the problems reported in Appendix B.
In particular, we would further explore whether the loss ratio
and the loss difference, i.e., the two decision criteria (see
[31]), always lead to the same optimal fire-support policy.

Further study of the effects on optimal time-sequential fire-
support policies of a campaign composed of different "phases"
(i.e., different combat dynamics in different pha..s of the
campaign). 1In Appendix C we presented some preliminary results
that investigate how considerations of unit "breakpoints" in

the combat mocdel affect the optimal fire-support allocation
policy. We would extend these preliminary results that show
that such an optimal policy is "modified near a breakpoint." Our
results indicate that the nature of the planning horizon (as
determined by the modelling of unit breakpoints) is a signifi-
cant factor in the determination cf optimal fire-support alloca-
tion strategies. 1In other words, otherwise appropriate results

-'-
policy.

Only one of the combatants is free to choose his time-sequential fire-support

16




PDiiea s g

il

AR

23

&
s
3

e oS LT

38

?

¢
2

R)s
)

can be entirely misleading if unit breakpoints are incorrectly
mocdelled (see Appendix C for further details).

(4) Study of methodology for the determinztion of optimal air-war

(5)

(6)

strategies. This study would include the quantitative deter-
mination of optimal time-sequential allocation of aircraft

to missions by application of game theory. A general framework
for interfacing a simplified model with a detailed simulation
(see [25]) would be developed. We would then focus on the
analytic determination of optimal aircraft mission-allocation
strategies by application of time-sequential game theory. A
general model of combat operations would be developed (to
include logistics, air and ground operations, FEBA movement,
logistics, logistics interdiction, etc.), but simplified models
would be studied in order tc develop insights into the structure
of optimal air-war strategies. A special emphasis would be
placed on determining what structures for the combat dynamics
lead to a saddle point in pure strategies so that the computatiomal
advantages of differential games may be explnited. We would em-
phasize determining how the model of combat operations influences
optimal air-war strategies. This work would be based on previous
studies by the author [34], [36], [37] and aided by his theoret-
ical developments on necessary conditions of optimali:y for
differential games (see [36], [46]). Our previous research [37]
has indicated that the outcome of the ground war is a significamt
factor’ in the determination of optimal air-war strategies and
that optimal strategies developed for a model not considering

the attainment of land-war objertives need not be optimal when
evaluated in a model which does cons?der land-war objectives.

Our goal would be to extend the state-of-the-art [11]}, [13]

for such determinations.

Examination of the effects of logistics constraints on optimal
campaign strategies. Models would be developed to relate
logistics capability to combat-effectiveness capability and then
appropriate combat optimization problems formulated. Such
regearch would provide insight into the worth of the Navy logistics
(pipeline) role in combat service support missions (see A~nendix

E of [36]).

Development of methodology for determining 'good" allocation
strategies (e.g., fire-distribution strategies, air-war
allocation-of-aircraft strategies, etc.) in time-sequential
combat games. Based on our past research we feel that it is
essentially impossible to rigorously apply optimization theory

to determine optimal combat strategies for realistic combat models
of any appreciable complexity. However, many valuable insights
into optimal combat strategies may be gained by considering
simplified combat models. It would seem that "optimal" combat
strategies developed for such simplified models could be used

t

This is not considered, for example, in either TAC CONTENDER [47] or OPTSA I

and 11 [7].

17
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as a point of departure for developing "good" combat strategies
for a complex combat model enriched in military detail. We
would work on the development of methodology to determine 'good"
combat strategies (e.g., air-war strategies) by interfacing

such simplified and complex models (see [25]). .
18
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APPENDIX A: Some Time-Sequential Fire-Support Allocation Problems

' 1. Introduction.
An important constituent part of fire support is the target allocation
function which matches the specific type weapon with an acquired target within
its environment.+ In view of the obvious importance of fire mission alloca-

tion, it is indeed remarkable that no systematic study has apparently been

made of the sensitivity of (pre:dicted) combat outcomes to the nature of fire
mission allocation techniques and/or of the quantitative justification of such

allocation rules.+? Tt

Typically, these allocation rules are based on target
priority lists along with such factors as amount of remaining ammunition,

range to target, etc. Unfortunately, the target priorities appear to be
judgmentally determined (the unchallengeable mystique of "military judgment"

or the "quantified judgment of military experts') and not related to the dynamics

of the battlefield situation. In view of this and also proposed future auto-

mation of fire direction centers (which perform the fire mission allocation
function), it would appear worthwhile to develop a quantitative scientific
methodology (which gives consideration to the dynamics of the battlefield
situation) for th2 determination of fire mission allocation. In the work
reported here we will develop some insights into time-sequential target priori-

ties in fire mission allocation by the combination of optimization theory (differ-

eniial game/optimal control theory) with Lanchester-type models of warfare.

~l'See pp. I-33 to I-43 of [21] for a discussion of the key elements of the fire
support system for systems analysis.

T+Here we mean whether the allocation rules are "good" rather than whether the
analyst sees the decision process in the real world this way.

+++See Table 13 on p. II-66 of [21].
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Thus, the determination of optimal target allocation strategies for
supporting weapon systems+ is a major problem of military operations research.
This problem is of particular relevance to the Navy mission of fire support
(both ty ship gunfire and by carrier-based air). The objectives of this

research are to determine optimal fire-support strategies in a time-sequential

fashion during the course of combat in several situations of tactical Interest

and to study the dependence of these strategies on the nature of the combat

model. In this work consideration is given to the dynamics of combat.+* We
emphasize the development of explicit expressions for the optimal fire-support
policies here. Such results are important not only for their own sakeﬁl"l"i~ but
also for testing the capabilities of proposed computational methods (for
example, Lagrange dyn.mic programming [25] for discrete-time versions of such
problems or the Lulejian successive—approximatiop methodology [19]).

There are many approaches to answering the question of what is the
"best" allocation (over time) of supporting weapon systems. These range from .
operational gaming (see [23] or [39] for a discussion of terminology and back-
ground) to analytical solution of an idealized differential game. However,
Berkovitz and Dresher (see p. 612 of [3]) state that "operational gaming is
not a helpful device for solving a game or getting significant information
about the solution." Indeed, one must distingu*-* between finding out how

people make decisions and how they should. Most analysts agree with Berkovit=z

and Dresher that operational gaming is not a useful tool for answering the

TSee [42] for a brief discussion of the distinction between a '"primary" weapon
system (or infantry) and a "supporting" weapon system.

?+This is marked contrast with essentially all the work reviewed in [21] in
which apparently no consideration is given to the evolution of the course of
battle.

+++0ne can clearly see the dependence of * e structure of the optimal time-
sequential allocation policy on model form and model parameters.

1.;"2
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latter question. Weiss [42] has emphasized that a simplified model of a
combat situation is particularly valuable when it leads to = cliearer under- i
standing of significant relationships which would tend to be obscured in a
more complex (and "realistic") model. It is in this spirit that most of the %
work reviewed below has been done and in which we consider several simplified
models for gaining insights into optimal fire-support strategies.
Our research approach is to combine Lanchester-type models of warfare
with generalized control theory (i.e. optimization theory for dynamic systems).
This research program is described in more detail =2lsewhere [34], [35]. In
the initial phase of research reported here we will examine a sequence of one-
sidedf time-sequential allocation problems in order to study the dependence of
the optimal fire-support policy on the nature of the combat attrition process.
These problems represent various versions of the same basic fire-support situa-
tion. Many of these optimal control problems are solved in detail, and such
results are useful for evaluating computational algorithms (see above). In
future work, we wouid extend these results to two-sided optimization problems

(i.e. time-sequential combat games).*+

2. Research Objectives.

The general objective of this resezcch is to develop combat attrition

e Nt A b ar s 4

models and optimization techniques to extend the state-of-the-art for the
determination of optimal time-sequential fire~support strategles in various
tactical scenarios. The specific ovjectives of the initial phase of this

research are to determine optimal time-sequential fire-support policies in

1.In other words, only one of the combatants is free to choose his time-sequential
fire-support allocation policy.

H.R. Isaacs [12] has emphasized the difficulties attendant with the transition
from one-sided to two-sided dynamic optimization problems.

s 3
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several situations of tictical interest and to study the dependence of these

volicies on the functisnal form of the model of combat dynamics.

3. Review of Previouas Work.

The determiration of optimal target allocation strategies for support-
ing weapon system: is in one form or another probably one of the most exten~
sively studied p:coblems in both the open literature and also classified
sources. During; World War II the problem of the appropriate mixture of
tactical and styategic forces (another aspect of the optimal fire-support
strategy problem) was extensively debated by experts. Some analysis details
are to be found in the classic book by Morse and Kimball (see pp. 73-77 of
{22]). The problem was studied at RAND in the late 1940's and early 1950's
(see [10]) and elsewhere (see [1]). It would probably not be too far-fecched
to say that this problem stimulated early research on both dynamic programming
(see [2]) and also differential games (see [10], [11]). Today the problem
of optimal air-war strategies is being extensively studied by a number of
organizations (see, for example, [26], [40]).

The most wideiy studied Lanchester~type differential game+ has been
A. Mengel's "War of Attrition and Attack" (see pp. 96-1N5 of lsaacs' book [11])
(also see [35], [36]). Optimal time-sequential "air-war'" strategies for two
versions of this problem are developed in Isaacs' wnow classic Look [11].
Discrete-time versions of this problem have been considered by Berkovitz and
Dresher [3], [4] (see Appendix D of [37] for further references to other related
work). Another related problem was considered by Weiss [42], who studied the

ES
optimal selection of targets for engagement by a supporting weapon system.

fThis term was apparently first coined in [34] (see also [35]).

HSee [33], however, for a justification of the optimality of strategies deter-
mined by Weiss [42]. A general solution algorithm is also presented in this

paper [33].
RCTA

R sl T




Kawara [15] has stud®.3 optimal strategies for supporting weapon systems
ir an attack scenario which is a variation of the model considered by Weiss
[42]. Kawara [15] concludes that each side's optimal strategy for the dis-
tribution of its supporting weapon system's fire is to always concentrate all
fire on the enemy's supporting weapon system (counter-battery fire) during

the early stages of battle (if the total prescribed length of battle is long

enough) and then later to switch to concentration of all fire on the enemy's
infantry. He states that this switching time "“does not depend on the current
strength of either side but only on the effectivenesses of both sides' support-
ing units" (p. 951 of [15]). Moreover, an optimal time-sequential fire-support
strategy has the property of always requiring concentration of supporting fires
on enemy infantry during the final stages of battle.
It is shown in {37], however, that Kawara [15] considered essentially

the only type of objective function which yields the switching times (i.e.
times of change from counter~battery fire to counter-infantry fire) to be

R independent of force levels in the optimal time-sequential strategies. Addi-
tionally, we showed that for other attrition structures the optimal fire-
distribution strategy could consist of splitting one's fire between enemy
infantry and artillery (counter-battery fire). Thus, Kawara's conclusions
about the nature of optimal time-sequential fire-support strategies are not of
general applicability, and one must determine optimal fire-support strategies
on a problem by problem basis. Other time sequential fire-support allocation
problems have been considered in our past work [35], [36], [37]. Other recent
work has considered various conceptual and computational aspects of time-

sequential combat games [25], [26]1, [27].




On a much more applied level, McNicholas and Crane [21] report the
results of research to identify a comprehensive methodology for evaluating
fire-support mixes. This is apparently the most comprehensive piece of

applied work on fire-support evaluation methodology and contains analysis of
the fire-support function and process, including a summary of previous work

and procedures for fire mission allocation. This problem (i.e. fire mission
allocation) is treated mainly in a descriptive manner (i.e. how do fire control
officers actually select weapons rather than how should they) with apparently
no consideration given to time-sequential aspects.

Lulejian and Associates, Inc. [19] report methodology for the optimum
allocation of field artillery fires over time between counter-fire and other
forms of five support to engaged troops. The dynamics of combat are modelled
by "interactive equations" with time treated discretely. A very credible
brigade-level model of conventional tactical combat is developed. The Lulejian
work is similar in concept to the work reported here, only it is much more
detailed and complex. However, the computational optimization algorithm
(referred to as an enforceable-bound technique which is basically a successive
approximation method) apparently has no mathematical justification and has

not been reported in the open literature.

4. A General (One-Sided) Time-Sequential Fire-Support Problem.

In this section we consider a general one—sided+ time-sequential fire-
support allocation problem. Particularizations of this general problem will
be subsequently considered in sections below.

Let us consider heterogeneous X forces in combat against heterogeneous

Y forces along a "front.'" Each side is composed of primary units (or infantry)

1-In other words only one of the combatants is free to choose his time-sequential
fire-support policy.
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and fire-support units. The X infantry (denoted as X, and x2) is in

1

direct combat against the Y infantry (denoted as Y. and Yz). We may

1

consider Xl and x2 to be two different infantry units operating on spa-

tially separated pieces of terrain. We assume that the X, infantry unit is

1

in combat against the Y., infantry unit and similarly for x2 and Y2 with

1

no "crossfire" (i.e. the X, infantry is not attrited by the Y2 infantry).

1
For the battle described above, we will consider only the "approach to

contact" phase of the battle. We assume that one force attacks the other
along the "front." In most of the particularizations considered below the
attacker will be the X force. In this case the "approach to contact" phase

of battle is the time from the initiation of the advance of the X. and X

1

forces towards the Yl and Y2 defensive positions until the Xl and X2

forces actually make contact (assumed to be simultaneous in the two combat

2

areas) with the enemy infantry in "hand-to-hand" combat. It is assumed that
this time is fixed and known to X.

The associated Lanchester attrition-rate coefficients for combat
between the X, force and the Y, force are denoted as ai(t,xi) for the

i i
effectiveness of Yi's fire and as bi(t,yi) for the effectiveness of Xi's
fire. Based upon different sets of assumptions* as to the conditions under
which the combat attrition process takes place, these coefficients (e.g.
ai(t,xi)) take different functional forms. We will give such assumptions for

each of the rv~tlems considered subsequently below. Additionally, both forces

may receive replacements*+ continuously over time with the corresponding

+The most comprehensive compendium of sets of assumptions and corresponding
Lanchester~type attrition processes known to this author is the IDA report by
A. Karr [14)]) (see also [5], [411]).

++Alternatively, we may consider that additional forces are entering into the
enemy's "field of fire" at these rates.
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replacement rates being denoted as ri(t) for the X

1 forces and as si(t)
for the Yi forces.

The Y forces may be supported by fire-support units (denoted as 2
with force level denoted as 2z(t)) which are invulnerable to (i.e. out of
range of) the direct fires of the X forces. In general, these fire-support
units cause attrition to the Xi forces at a rate Ai(t,xi). (It should be
noted that this coefficient includes an allocation factor for the distribution
of Z fire over the X forces.) Particularizations of these general loss
rates and the circumstances under which they are hypothesized to apply are
given in the specific problems consiuered below. For the investigation reported
here, we assume that these Z fire-support units do not engage the W fire~-
support units.

During the "appr~ach to contact" the fire-support units of the X force

(denoted as W) distribute their fire over the Y forces and (if present)

their fire-support units (i.e. 2Z). 'Lie purpose of this investigation is to

deiermine the best possible such time-sequential allocation according to a

given criterion (given below). Let ¢i denote the fraction of W fire-support

units which fire at Yi and Bi(t,yi) denote the Lanchester attrition-rate
coefficient corresponding to the effectiveness of this fire against the Yi
forces.* Again, particularizations of these general loss rates are considered
in the specific problems below. Further, let ¢ denote the fraction of the

W fire-support units which fire at the enemy Z fire-support units (if these

are present in the specific model under consideration) and B(t,z) denote the

corresponding general Lanchester attrition~rate coefficient. We then have that

TThus, the loss rate for the Y, forces as a result of these supporting fires
is the product of these two fac%ors, i.e. (loss rate for Y freom W fire

i
support) = ¢ B, (t,y ).
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¢+ 2 ‘1 =1 (so that ¢ may be eliminated for convenience). Since the
1l

W fire-support units are not in the combat zone (and consequently do not
suffer attrition from the Y forces) and are not engaged by the enemy's 2
fire-support units,* for constant ¢i there is a constant number of fire-

support units firing at Y The combat situation described above is shown

i
diagrammatically in Figure 1.
It is the objective of the X force to utilize its fire-support units
over time in such a manner so as to achieve the "most favorable'" situation
measured in terms of the net worth of survivors (computed according to linear
utilities)+f at the end of the "approach to contact" at which time the force
separation between opposing infantries is zero and supporting fires must be
lifted from the enemy's infantry positions in order not to also kill friendly
forces. Thus, we have the following optimal control problem for the determina-
tion of the optimal time-sequential fire-support allocation policy (denoted

as ¢;(t) for 0st=T (with i =1,2), where T denotes the time of the

end of the "approach to contact") for the W fire-support units.

2 2
maximize { § v, x, (T) - } w,y, (T)},
B () ksl B K 1 KK
with stopping rule: te - T=20,
dxi
subject to: —= = -a_(t,x,)y, - A, (t,x,)z + r_(t),
(battle dynamics) de t S 1 i 1
dyi
e -bi(t,yi)xi - ¢1Bi(t,yi) + Si(t) for 1 =1,2,
dz 2
T =-- 121 $,)B(t,2), (1)

~|~This is not an essential assumption. The analysis presented here is easily
extended to the case in which the 2Z fire-support units engage in counter-
battery fire.

++Other criterion runctionals are considered in Appendix B.
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Figure 1. Diagram of General (One-Sided) Time-Sequential

Fire-Support Problem Faced by W Fire-Support Units,
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with initial conditions

xi(t-O) ~ x: and yi(t~0) = y: for £ =1,2 and z(t=0) = zy

and

X19%X55¥1sYs2 20 (State Variable Inequality Constraints)

014-02 £1 and ¢i 20 for 1i=1,2 (Control Variable Inequality Constraints),

" where

xi(t)

z(t)

ai(t’xi)

Ai(t,xi)

denotes the value (utility) per unit of surviving X, force,
similarly for v, (which corresponds to the Y1 force),

denotes the number of X:l infantry at time ¢,
similarly for yi(t),

denotes the number of Z fire-~support units at time ¢t,

is a (Lanchester) attrition-rate covefficient (reflecting the

effectiveness of Yi fire against Xi),

similarly for b, (t,y,),

is a (Lanchester) attrition-rate coefficient (reflecting the
effectiveness of 2 supporting fires against xi).

similarly for Bi(t'yi) and B(t,z),

(with numerical value T) denotes the end of the optimal control
problem,

denotes the fraction of W fire support directed at Yi'

In the ensuing analysis of specific problems we will only consider

cases in which no force level is driven to zero (i.e. X4s¥ys2 > 0). In Appendix

C we consider some models in which this assumption is relaxed and breakpoints

are considered for the various forces. Unfortunately, this leads to quite

complex mathematical details.
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5. A Sequence of Problems to Study the Effects of Nature of Attrition Structure

on_the Optimal Fire-Support Policy.

The effects of the nature of the attrition structure on the optimal fire-
support policy are studied by examining a sequence of specific problems and
then contrasting the structures of the optimal time-sequential fire-support
policies for these problems. In this manner we will study the dependerce of
these jolicies on tie functional form of the model of combat dynamics. The
problems that have been considered are summarized in Table I. In most cases
the optimal time-sequential fire-support policy will be determined by the

mathematical theory of optimal control (see [6], [24]).

6.1. Problem 1.

In this secticn we will consider the special case of the general problem
(1) graphically depicted in Figure 1 in which both infantries in each of the
two combat zones cause attrition to the enemy forces at rates proportional to
only the numbers of firers. The corresponding Lanchester attrition-rate
coefficients are for mathematical convenience assumed to be constant over the
course of battle. It is convenient to refer to the attrition of a target type
as being a ''square-law" process when the casualty rate is proportional to only
the number of enemy firers and as being a "linear-law" process when it is
proportional to the product of the numbers of enemy firers and remaining
targets. Considering both the work of Brackney [5] and alsc that of Karr [14],
we see that one set of conditions under which a '"square-law" attrition process
occurs* is when "aimed" fire is used and a constant time (indpendent of the
target type force level) is required to acquire targets (see [5]), [14], and

{41] for a further discuss’on of such assumptions and alternative setc of

+
"To be precise, one can only conjecture that such an attrition process probably
occurs under the stated conditions.
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conditions which lead to such an attrition process). The X fire-support

units (denoted as W ) deliver '"area fire" against the Yi Forces.f In this

case, the Yi attrition rate is proportional to the Yi force level (see [41];

also [14]). Other porticns of the general model (1) depicted in Figure 1 are

assumed to be absent,

In other words, we will consider the case in which the following hold:

e
9
¥,
7
¢ 3
4

: ai(t,xi) = 5; = constant,

% bi(t’yi) = bi = constant,

: Bi(t,yi) = ciyi where c; is constant,
_% and Ai(t’xi) = B(t,z) = ri(t) = si(t) = 0.

,f For notational convenience we will again denote Ei as a,, etc. The parti-
3 .
§ cular combat situation is shown diagrammatically in Figure 2. It is then con-
Y

.” venient to re-state the problem as follows:

2 2 2

g maximize {Z v, x, (T) - £ w,y,. (D},

- b5 (1) kel k7k k=1 KK
:f with stopping rule: tg - T =0,

3 dx.

: bject to: -=— = -a.y (2)
subJ ©dt i’1

dv;

A - = - - ¢.cC. s i=1,2

} It b.x ¢1 1y1 for i 1,2,

. with initial conditions

{ L _ .0 o . .

5 xi(t=0) = X; and yi(t=0) =y, for i=1,2,

;

ATSAN AT VA o

e
"In other words, we assume that X's fire support units fire (at a constant

rate} into the (constant) are contcrining the enemy's infantry without feedback
as to the destructiveness of this fire,

g
T I
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We will consider only the first of these here.

CASE I: wl/(alvl) = wzl(azvz); i.e. w, = kaivi for i=1,2.

In this case enemy survivors are valued in direct proportion to the

rate in which they destroy value of the friendly forces. We then have

£ £
S‘(T-O) = k(alclvlyl-azczvzyz) (24)
and
S (1=0) = a.cov.y £ o k@b.cv.x - ab.cv.x) (25)
o (750) = 3,¢,v¥) - 3¢V, 3,)%15Y1%1 T 3;%,%Y%)-

H b = .
There are now three further subcases: (A) ab, azbz, (B) albl > azbz' and

©) albl < azbz. We will consider only the first of these here.

SUBCASE A: alb1 = azb2 (and w, = kaivi for i = 1,2).

We will focus on conditions which must necessarily hold on a singular

subarc. In this case the singular control (19) becomes

b = (chz-ZaIbl (c,Q-¢,Q,))/ (cfklwgnz) . (26)

. d ~
From (12) it follows that 3?{CIQ1'CZQ2) = -Z(CISI-CZSZ), whence by (18) on a
singular subarc

le1 = czQ2 + constant. (27)

It is convenient to consider the force ratio r, = xi/y1 » and then by

(2) the force ratio statisfies the following Riccate equation
o 2
T, =a, - ¢iciri - biri° (28)

1l

We also compute that

d (T1)_ 1 1 B!
E?(‘f;>" :albl (blrl - b,,rz) m (byTymhoTy) - dey “‘“cz}(r;)'

(29)
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and
X15X0s¥sY, > 0 (State Variable Inequality Constraints)

¢1 + ¢2 =1 and ¢i >0 for i=1,2
(Control Variable Inequality Constraints),
where all symbols are as defined above. It will be convenient to consider

the single control variable ¢ defined by

$=¢, sothat ¢,=(1-9) and 0<¢ <1 (3

In the analysis presented here we assume that no force level ever becomes zero

(i.e. X yi > 0 always). In Appendix C we consider some models in which

this assumption is relaxed and breakpoints are considered for the various

forces.

6.1.1 Necessary Conditions of Optimality.

We characterize an optimal fire-support policy by application of modern
optimal control theory. The Hamiltonian [6] is given by (using (3))

2

H= -121 P;3;Y; - 9y (byx +éc,y)) - q,(b,x,+(1-4)c,y,), (4)

50 that the maximum principle yields the extreme control law

1 for S¢(t) >0,

¢*(t) = (5)
0 for S¢(t) <0,
vhere S¢(t) denotes the ¢-switching function defined by
S¢(t) = cl(-ql)yl - cz(-qz)yZ' (6)

The adjoint system of equations for the dual variables (again using (3) for

convenience) is given by (assuming that xi(T), yi(T) > 0)

Hi
<

and biqi with pi(T)

L e TS
1}

' _ )

1
1
=
.—h
]
o]
(w1
1]
o
9

* .
a;p; * 0;¢9; with q;(T)
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Computing the first two time derivatives of the switching function

S¢(t) = cl(blqlxl-alplyl) - cz(bzqzxz'azpzyz)’ (8)

Sp(t) = 2a;b)¢) (pyX)-6)) - 28,00, (Py%,-q,,)
2 2
+ ¢cl(b1q1x1+a1plyl) = (1-¢)c2(b2q2xz*azp2y2)’ (9)
we find that it is convenient for purposes of synthesizing extremals+ to intro-

duce the variables Pi’ Qi’ Ri’ and Si for i = 1,2 defined as follows:

Pi = B3y * 9% Q = py%; - 9yY;
(10)
Ry = bjasX; + a;py¥5,  8; = bia;X; - a;p.y,s
and then (using (3)) we have for i = 1,2
f f
Pi(t) = vixi - wiyi = constant, (11)
). = 2§ ith T = xf + £ (12
Q = 25; with — Qi(T) = vyX) + WYy, )
R. = ¢.C.S ith R,(T) = -b.W.x% + a,v.y 13
i 7 %%5 Wit (T} = -bjWx, +a,veyes  (13)
: . i £ £
Si = ZaibiQi + ¢iciRi with Si(T) = -biwixi - av.y, < 0, (14)

f . .
where X; denotes xi(T) and similarly for yf. The first two time derivatives

of the switching function may then be written as

$,(t) = ¢;8) - ¢,8, (15)

S¢(t) = zalbllel - 2a2b2c2Q2
+ c%R, - (1-9)c2R (16)
171 272"
Thus, we see that on a singular subarc' * we have [6], [16]
cl(-QI)yl = cz("qz)yZ’ (17)

clsl = Czsz) (18)

+ . . L
By an extremal we mean a trajectory on which the necessary conditions of
optimality are satisfied.

++
See [31] for a further discussion.
A-17
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with the singular control given by
be = (c2R.-2(a,b,c,Q,-2.b,c.Q,))/ (3R +c2R ). (19)
S 272 117171 "2727272 11 722
On such a singular subarc we require that

2

c.R, +c R, >0 (20)

2
171 272 -

in order that the generali:zed Legendre-Clebsch condition be satisfied, since
2
2 1d oH _ 2 2
Y gdtz <5E>£ = CjRy + Ry

6.1.2 Synthesis of Extremals,

In this section we will partially synthesize the extremal fire-support
policy+ in one special case. In synthesizing extremals by the usual backwards
construction procedure (see, for example, [29] or [31])it is convenient to

introduce the "backwards" time 1t defined by 1 = T-t . We then have

f
w a,c.v.y W w
S¢(r=0) = azczvzyg 3 i { 111 é “\a 3 ) i (21)
1'1 a,C,V,Y, 2°2 a1

S¢(T) -clsl + czsz, (22)

and
2
2a,b (c,Q;) - 2ab,(c,Q,) + ¢ch1 - (1-9)cR,, (23)

[-X.]
S (1
¢( )
-] (]
where S, denotes the 'backwards" time derivative S, = dS¢/dT. Without loss

$ ¢
of generality we may assume that wl/(alvl) > wz/(azvz), and then ther are two
cases to be considered: -

(N wl/(alvl) = w2/(a2v2),

(IT) wll(alvl) > w2/(a2v2).

t . . "
By an extremal policy we mean one for which the necessary conditions ol opti-
mality are satisfied. It may, of course, not turn out to be an optimal policy.
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We will consider only the first of these here.

CASE I: wll(alvl) = wzl(azvz); i.e. w, = kaivi for i=1,2.

In this case enemy survivors are valued in direct proportion to the
rate in which they destroy value of the friendly forces. We then have
S, (1=0) = k(a,c,v yf-a c,V yf) (24)
¢ 117171 72727272
and

® £ 3 f f
S’(r-O) = alclvlyl - 3,0V, + k(alblcllel - azbzczvzxz). (25)

. b = "
Theve are now three further subcases: (A) ab, azbz, (8) alb1 > azbz, and

) albl < azbz. We will consider only the first of these here.

SUBCASE A: alb1 = azb2 (and W, = kaivi for i = 1,2).

We will focus on conditions which must necessarily hold on a singular
subarc. In this case the singular control (19) becomes

4 = (cgnz-zalbl (clql-czqz))/(cfnlmgaz). (26)

. d .
From (12) it follows that a;{clql-czqz) = -Z(clsl-czsz), whence by (18) on a
singular subarc

CIQI = c2Q2 + constant. (27)

It is convenient to consider the force ratio r, = xi/y1 , and then by

(2) the force ratio statisfics the following Riccate equation

o 2
r, =a, - ¢iciri - biri' (28)

We also compute that

a{f1\_ 1 1 !
E?(g')‘ {albl (blrl ) b,,r2> " (g hoTy) - dey “'“cz}(r”)’

2

(29)
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since for alb1 = azb2

rl/a1 = rzlazﬁé b,r; = b,r,.

On a singular subarc where 0 < ¢S < 1 we have via (13) that

dRI/dR2 = ¢S/(l-¢s).

(30)

(31)

If we wind up on a singular subarc (for a finite interval of tim>) at the end

of the f'approach to contact' then via (24) and (25) we have

£ _ £ £ _ £
3G VY] T 8ycvpy, and abicvix) = asbcovox,,
whence
bri=bref  or equivalently rf/a = rf/a
1'1 272 ’ ! 171 2092

From (20) (using (13) and (32))we find that it is necessary that

f f
Y5 z_kbixi.
By (12) and (27), we have
€19 = &%

whence by (26)
2 2 2
¢S = c2R2/(c1R1+c2R2).
Considering (13), (31), and (37), we find that

clR1 = c2R2,

whence by (36)

bg = c2/(c1+c2),

so that (29), (33), (38), and the uniqueness of solution to the Riccati

equation (28) yield

blr1 = b2r2 on a singular subarc.
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Thus, we have shown that if we wind up on a singular subarc for a finite inter-

val of time ending at t = T, then on the singular subarc (39) holds. In this

r
case (29) superfluously yields a‘-‘;(;})r- 0.
2

6.1.3. A Consequence of Fire-Support.

In the work at hand we examine optimal fire-support policies under the
assumption that X5 ¥; > 0. Another aspect that we will briefly discuss here
(but not at this time pursue further) is the quantification of how che applica-
tion of fire support changes the course of combat. This may be quantitatively

seen by consideration of the force-ratio equation

2
dri/dt = biri + ¢i(t)ciri - a, (40)

where T, = xi/yi. Let us consider a battle between the Xi and Yi forces which
terminates at the first time that either of two given 'breakpoint" force ratios
is reached. These '"breakpoint" force ratios, denoted as q{ when Xi wins

i
and as r§ when Yi wins, satisfy 0 i.rﬁ» < rg < rﬁ < +», Corresponding to
i i

A s
a fight until the annihilation of one side or the other is the case in which

f . . . R . X
ri; = 0 and .= e For mathematical convenience we will consider this special
i

case, with res:its being readily extended to the general case. As noted in [34],

the entire topic of modelling battle termination is a problem area in contemporary

defense planning studies, and there is far from universal agreement on this topic.
Let us now see how the force-ratio equation (40) can help us to quantita-

tively evaluate the effect of fire support on battle outcome. We observe that

for a fight-to-the-finish that (a) Xi wins at t = T when ri(T) = +», and

) Yi wirs when ri(T) = 0. Thus, it seems appropriate to say that "the course

of battle is moving towards an Xi victory" when dri/dt > 0 (or, simply, that

"Xi is winning'). Moreover, dri/dt > 0 if and only if
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bl(E) + 8, (e, (B)y,(8) > a,yo(0), ©)

which nay-be considered fo be a "local® condition fsr xi to win. When ¢i(t)
is constant over the course of battle, then (41) holding at t = 0 is a nec-
essary and sufficient condition for X. to win. This may be proven by.consid-
ering T}(t) = {-#;(t)e; + H2(t)ci+aab.M/2b, and r(t) = {-4,(t)c, -
/¢§(t)c§+4aibi}/2bi. It follows that dri/dt <0 for ri <r < r; and that
r; <0.< r; . Thus, r;(t) being nonincreasing and dri/dt(t=0) >0 is a
sufficient condition for Xi to win. We aiso observe that ar;/8¢i < 0 always
so that X can trade off initial infantry strength Xs with fire support in
attempting to prevail in combat.

In other words, consideration of (41) shows us quantitatively how the
applicafion of fire support may change the course of combat (in the sense of
determination of the victor). We will not pursue such matters furth;r here,

however.

6.1.4. Need for Approximations.

We have not fully determined the optimal fire-support policy for
Problem 1. As seen in Sections 6.1.1 and 6.1.2 above the details are quite
complex. Moreover, the optimal policy (expressed as a closed-loop control -
(see [34], [38])) depends on the five state variables t, X1 Xos ;1, and Yy -
Thus, ¢* = ¢*(t’£RZ) . In the future we plan to determine the optimal policy
in some special cases (e.g. W, = kaivi and ab, = szbz). Even so, it will be
quite complex to describe because of the dimensionality of the state space.

It is therefore of interest to use approximations to simplify solution
details. There are two limiting cases of the battle (2) that may be considered

in this respect, depending on whether X 1is the attacker or the defender. For

these limiting cases, the approximations are
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(1) X attacks: bi 0,

(2) Y attacks: a; = 0.
We will see that such approximations (for example, that when X attacks, the
attrition caused by the attacking forces during the "approach to contact" is
negligible, i.e. bi = 0 (see [37])) lead to a considerable simplification of
analytic solution details and then the optimal fire-support policy may be
readily determined. Without the use of approximations, it appears to be
impossible to develop insights into the optimal fire-support policy for (2)
without computational studies. Furthermore, the availability of complete
analytic solutions for simplified versions of (2) (i.e. when the above approxi-
mations are used) is useful for checking the adequacy of proposed computational

algorithms (see [6], [25], [26]).

6.2. Problem 2.

In this section we will consider a version+ (see Section 6.1.4) of
Problem 1 as given by (2) in which heterogeneous X forces attack the static
defense of heterogeneous Y forces along a "front." We assume that the Yi
forces cause attrition to the Xi forces according to a ''square-law' attrition
process. [As Brackney has pointed out [5], one would expect such a process to

occur when the time to acquire targets is negliyible in comparison with the time

+This is, of course, a special case of the general problem (1) {see Section 4)
graphically depicted in Figure 1 in which the following hold:

ai(t,xi) = fﬁ = constant,
bi(t’yi) = bi = constant,

. .) =¢c.y. . is co
Bl(t,yl) cly1 where ¢ nstant,

ri(t) is a given piecewise continuous function
and Ai(t,xi) = B(t,z) = si(t) = 0.

For notational convenience we will again denote a, as ag, etc.
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to destroy them. Such a situation is to be expected when one force assaults
another (see [5]).] The attrition of the Yi force by the attacking Xi is
assumed to be negligible. [We assume that the objective of the Xi forces
during the 'approach to contact" is to close with the enemy position as rapidly
as possible so that small arms fire by Xi is held to a minimum or that firing
is done "on the move."] As before, the X fire-support units (denoted as W)
deliver "area fire' against the Yi forces+ (see [28] for a discussion of the
determination of the Lanchester attrition-rate coefficient for the fire-support
units). All Lanchester attrition-rate coefficients are assumed to be constant
during the "approach to contact." Furthermore, we assume that additional Xi
forces enter the '"fields of fire" of the Yi force at a rate denoted as ri(t).
The above model might describe the combat attrition process for an amphibious
assault (see [7], [8], [13]) in which the attacking side employs fire-support
units.

The combat situation described above is diagrammatically shown in

Figure 3. It is convenient to restate the problem as follows:

2

2
2: kak(T) - 2: kak(T)},

maximize
k=1 k=1

5, (1)

with stopping rule: te - T =0,

dxi (42)
subject to: rrali -ai)’i + ri(t),

dy; .

rrali -¢iciyi for 1i=1,2,

+Alternatively, if small groups of defenders are attacked by the W fire-
support units, then the same mathematical form of attrition occurs when the
time to acquire targets is the constraining factor in the attrition process
and this time is assumed to be inversely proportional to enemy troop density.
Brackney [5] postulates that this occurs for attacks upon enemy defensive
positions in which one must scarch (i.e. visually scan) for targets.
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Problem for an Amphibious Assault (Denoted as Problem 2).
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Xy xz, Yy yz >0 (State Variable Inequality Constraints)
¢1 + ¢2 =1 and ¢i >0 for i=1,2
(Control Variable Inequality Constraints),
where ali'symbols are as defined above. As shown in Table I, the above problem
(42) has been dcsignated as Problem 2. It will be again convenient to consider
the single control variable ¢ defined by (3). It should be noted that for

T < +» it follows that we will always have yi(t) >0 for i=1,2. Thus,

the only state variable inequality constraints (SVIC's) that must be considered

are X, > 0 . Howeve.:, let us further assume that the attacker's infantry force

levels are never reduced to zero. This might be militarily justified on the

grounds that X would never attack the Yi position if his attacking Xi
forces could not survive the "approach to contact." As a possible future
research task we would recommend the determination of what relationship between
the Lanchester attrition-rate coefficients, initial force levels, length of
approach to contact, and the X fire-support policy is sufficient to guarantee
this (see Section 6.2.5). In Anpendix C we consider some models in which break-

points are considered for the various forces.

6.2.1. Optimal Fire-Support Policy.

The optimal time-sequential fire-support policy (expressed as a closed-
loop contro)+) for Problem 2 is shown in Table II with ancillary information on
switching times being given in Table III. It should be recalled that we have

assumed that neither of the attacking infantry forces can be reduced to a zero

force level during the approach to contact. The proofs of certain statements

+For a discussion of the distinction between an open-loop time-sequential policy
and a closed-loop one, sce [34] or [38]. For deterministic models such as the
one under consideration, the two types of policies are well known to be equiva-
lent.
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Table II. Optimal Fire-Support Policy for Problem 2.

Nonrestrictive Assumption: aI/(alvl) 3—"2/(32V2)

Optimal (closed-loop) time-sequential fire-support policy is

_ £, f
. PHASE I for 0 <t <t; =T- 7,(y;/¥;)

1 for yl/y2 > azczvzl(alclvl),
o*(t,x,y) = c2/(c1+c2) for y1/y2 = a2c2v2/(a1c1v1),

0 for y1/y2 < azczvz/(alclvl),

PHASE IT for T - Tl(yf/yg) <t< T

¢*(t,£’z) = 1)

where
f f
T for o > pgs
“ for < £ < £
Tl’ T¢ pL""‘p pS’
0 for pf - Pps
a.c.v w w
2722 2 1
o =y/y,, and o=< ——>< )/(av>
172 L alclv1 a2v2 11
NoTES' T

{n 15 is the unique nonnegative root of F(r=rs) = 0.
(2) For L < pf < p:, T¢ is the smaller of the two positive roots of

G(T=r¢;pf) = 0.

It is assumed that problem parameters and initial force levels are such that
xi(T) >0 for i=1,2,

HSee Table IIl for the definitions of F(t) and G(r;pf).
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Table III. Determination of the Switching Times

Tg and T¢ for Problem 2.

Nonrestrictive Assumption: wl/(alvl) 3_w2/(a2v2)

Tg is the unique nonnegative root of F(T=TS) = 0.
For Pl < pf < pg, T¢ is the smaller of the two positive roots
of G(T=T¢;pf) = 0.

It has been shown that
(a) bounds on 1, are given by 0 < 1, < T,
¢ PRI £_ f
(b) T¢ .S a strictly increasing function of p~ for pL <p < ps,
(¢) there is no root to G(t=T

f f
¢’,9 ) =0 for p > P

For the above we have

W W
F(T)=T+<-c1—-a‘1,>e—clr-<cl-a‘2,>
1 11 1 2°2

, f 1
G(t50) =
1

c,T a,c.v a,c.v w
<01_1> 17171} f NN w! 1) f

Bounds on T, are given by:

S

(a) For w,/(a,v;) < Ve,

\
(b) For l/c1 —-wl/(alvl)’
I N "1 PR B
< LV \31Y1 /) - STV 3y,
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regatdi;g suitching times are to be found in Section 2.3 of Appendix B.

As a cloged-loop control, the optimal fire-support policy is most con-
veniently expressed in terms of yllyz =p (i.e., the ratio of the numerical
strengths of the two defending infantry forces) and v =T - t (i.e., the
"backwards" time or "time to go" in the approach to contact). When enemy
forces are valued in direct proportion to the rate at which they destroy
value of the friendly forces, i.e.

w, = kaivi for 1i=1,2, (43)
the optimal fire-support policy takes a particulary simple form (denoted as
POL1CY A):

POLICY A: For 0 <t<T

1 for yl/y2 > a2c2v2/(a1clv1),
$*(t,x,y) = { cy/(eyrey)  for 1/, = 8,0,v,/(8 0v4), (44)
0 for y1/y2 < a2c2v2/(alc1vl).

This is shown pictorially in Figure 4 in which optimal trajectories are

traced backwards in time. In this case, = (0 (see Table I1I), i.e. the

1
entire approach to contact is "PHASE I." It is convenient to note that,

for example, when ¢(1) = CONSTANT for 0 < tv < 0 , we have
£
p(t) = p~ exp {[¢c; - (1-#)c,]} .

When enemy forces are not valued in direct proportion to the rate of
which they destroy value of the friendly forces (without loss of generality
we may assume that wll(alvl > wz/(azvz)), the solution to Problem 2 is
considerably more complex as shown in Figure 5. As we see from Table II, the
planning horizon may be considered to consist of two phases (denoted as PHASE I

and as PHASE II) during each of which a different fire-support allocation rule is
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CASE for wll(alvl) = w2/(a2v2)

SINGULAR §

Cgf = c2/(cl+c2)

ARSI RPN S

can .

—

A

Backwards Time, = T

Figure 4. Diagram of Optimal (Closed-Loop) Fire-Support
Policy (POLICY A) for Problem 2
When wl/(alvl) = wzl(azvz)

(not drawn to scale).
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CASE for wll(alvl) > 92/(82\'2) ‘—

INGULAR SURFA

¢* = c2/(c1+c

fi‘ < :

Backwards Time, 1 t' T=0
NOTES: (1) o = y1/y2,

(2) See Table III for definitions of oL and pg.

Figure 5. Diagram of Optimal (Closed-Loop) Fire-Support
Policy (POLICY B) for Problem 2
When wll(alvl) >w2/(azv2)
(not drawn to scale).
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optimal. We denote this policy as POLICY B (see Table II). During PHASE I,
POLICY A is optimal; while during PHASE II, it is optimal to concentrate all

supporting fires on Y, (which has been valued disproportionately high). The

1
absence or presence of PHASE II itself in the optimal time-sequential fire sup-

port policy depenis on the ratio of enemy strengths p = yl/yz. The length of
PHASE I1 (i.e,. 11) is independent of the final force levels of the attacking

f
infantry units (i.e. xi and xg) but depends only on pf = yi/y2 and the combat

effectiveness parameters (see equations (42)).

6.2.2. Necessary Conditions of Optimality.

The Hamiltonian [6] is given by (using (3))

2
H= Z pi(-aiyi+ri(t)) = q1¢c1yl = q2(1'¢)c2y2’ (45)
i=1

so that the maximum principle again yields the extremal control law (5). The
adjoint system of equations for the dual variable (again using (3) for conven-

ience) is given by (assuming that X, > 0)

pi(t) = vy for 0<t«<T,

and (46)
° _ * . - . -
qi = aivi + ¢iciqi with qi(T) W, for i = 1,2,
Computing the first two time derivatives of the switching function (6)
S¢(t) = -a,6,viyy + 3,CoVy¥y (47)
S4(8) = a,¢) vy  (€4) - a,c,v,y,(c, (1-0)), (48)

we see that on a singular subarc we have [6], [16]
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¥1/,y = ayc,v,/(a c,v;), (49)
(-9,)/(a;v,) = (-9,)/(ayv,), (50)

with the singular control given by
bg = cy/ (e +e)). (51)

Cn such a singular subarc the gernalized Legendre-Clebsch condition is satisfied,

51
ae /| = 21517171 (e1%ep) > 0.

2

since fL dz
¢ |at

The adjoint variables p(t) and q(t) are continuous at all points of

continuity of .ET(t) = (rl(t), rz(t)). Let t. be a point of discontinuity of

d
r(t). Then again p(t) and q(t) are continuous at ty o although the
Hamiltonian satisfies H(t;) = H(t:) - v, where v 1is an unrestricted multi-
plier. Thus, changes (discontinuous) in .E(t) have no direct effect on the

optimal fire-support policy.

6.2.3. Synthesis of Extremals.

In synthesizing extremals by the usual backwards construction procedure
it is convenient to consider (21) and
®
S¢(T) = alclvlyl = 8,C,V,Y,. (52)

We will omit most of the tedious details of the synthesis of extremals because
they are very similar to those given in [31]. Without loss of generality we

may assume that wll(alvl) 3_w2/(a2v2), and then there are two cases to be con-

sidered:
(1) wll(alvl) = w2/(a2v2).
(11) wll(alvl) > w2/(azv2).
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: = 3 . = f i= .
CASE I: wll(alvl) wzl(azvz). i.e. w, lcativi or 1,2

In this case (21) becomes
S (t=0) = a,cv yf(w /(a,v.))a c,v yf/(a c.v yf) -1
¢ 2227271 711 111712727272 ’
whence follows (44) by the usual methods.

CASE II: wl/(alvl) > wzl(azvz).

£, £
In this case it follows from (5), (6), and (21) that for pf = ylly2 >

* = .
azczvzl(alclvl) we have S¢(r) >0 and ¢*(t) =1 for all 17 >0 Since

222

o P a.c.v v, v,
S (t=0) < 0=»s,(t=0) < 0 , it follows that for p < —
¢ ¢ 3:5v1/ \32%2 )/ \*1"1

we have S¢(r) <0 and ¢*(1) =0 forall >0,
There may be a change in the sign of S¢(T) for c2w2/(c1w1) < pf <

/(aje,v.). In this case ¢*(1) =1 for 0< 1 <1, and then

3,6V, 3159

c. T a,c,V a,c.v W w
00wt {2 (1) (L)1 (200) () e ()
1 I\ %2722 2722

11 2¥2/

(4 -]
It is clear that we must have S¢(T=Tl) <0. If S¢(T=Tl) < 0, then we have

a transition surface with T (denoted as T¢) given by the smaller of the two

f
positive roots of G(T=T¢;O ) = 0 , where G(T;pf) is given in Table III. If

S¢(T=T1) = 0 , the singular subarc may be entered, and then =

(denoted as rs)

1

is given by the unique nonnegative root of F(T=TS) = 0 , where F(tr) 4is given
in Table III. We denote the corresponding value of pf as pg . Then there is
no switch in ¢* for pf > pg (see Section 4.2 of Appendix B for a proof of
this statement; the development of bounds for g is also given there).

The above information immediately leads to the extremal field shown in

Figure 5 (see also Tables II and III).
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6.2.4. Determination of the Optimal Fire-Support Policy.

As we have discussed elsewheres [30]-[32], [34], [38], the optimality
of an extremal trajectory may be proven by citing the appropriate existence
theorem for an optimal control to the problem at hand; there are two further
subcases: (1) if the extremal is unique, then it is optimal or (2) if the
extremal is not unique and only a finite number exist, then the optimal trajec-
tory 1s determined by considering the finite number of corresponding values of
the criterion functional.+ The existence of a measurable optimal control fol-
lows by Corollary 2 on p. 262 of [18]. In Section 6.2.2 and 6.2.3 above, we

have considered necessary conditions of optimality for piecewise continuous

admissible controls (see p. 10 and pp. 20-21 of [24]). It remains to show that
one of the measurable optimal controls is piecewise continuous. This may be
done by observing that if we consider the maximum principle for meisurable
controls++ (see p. 81 of [24]), then it follows from the backwards synthesic

of extremals that the optimal control is piecewise constant (and hence plece-
wise continuous)++*. The optimality of the extremal fire-support policy devel-

oped above follows by the uniqueness of extremals (see [31]).

+It has not been possible to determine the optimality of a policy by citing one
of the many known sets of sufficient conditions (see [6], [31], [38]). In par-
ticular, even though the planning horizon for the problem at hand is of fixed
length, one cannot invoke the sufficient conditions based on convexity of
Mangasarian [20] or Funk and Gilbert [9] because the right-hand sides of the
differential equations (42) are not concave functions of X0 ¥y and ¢1 .
++We have taken the liberty of changing the sign of the adjoint vector of
Pontryagin et al. [24] (see p. 108 of [6]). When the admissible controls are
measurable and bounded, the Hamiltonian (45) need only attain its maximum almost
everywhere in time.

+
++'This follows from the control variable appearing linearly ia the Hamiltonian
(45), the control variable space being compact, and the switching function being

continuous for 0 < t < T . The maximum principle (also singular control consid-

erations) then yieiﬂs ‘that the optimal control must be piecewise constant and

uniquely determined almost everywhere, since S, (t) can change sign at most once

(see p. 130 of [24]). [The author wishes to thgnk J. Wingate for pointing out
this type of argument.]
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6.2.5. A Further Consequence of Fire Support.

In the work at hand we have examined optimal fire-support policies under

the assumption that xg > 0 . Another aspect that we will briefly discuss here

(but not at this time pursue further) is the quantification of how fire support

can guarantee that x, > 0 always. From the state equations (42) we have

i

8,

t t 1
b - = © - o - Y
E xi(t) Xy + £ ri(s)ds ayy £ ds1 exp { ¢y f ¢i(sz)dsz} R

so that we see explicitly how xi(t) depends on the fire-support policy adopted

3 by X . For example, when ¢i =1 and ri(t) = ;; , then

s - -cit o
: xi(t) =x +tr, t- (1-e )aiyi/ci'

For such an expression, it would be of interest to determine what conditions

guarantee that xi(t) >K>0 . Moreover, time-sequential fire-support alloca-

o Sy it 4

tion in this model may determine whether enough Xi survive the approach to

DI By 2 A

contact to effectively initiate close-assault tactics.

A=

6.3. Problem 2a.

As seen in Table I, Problem 2a is the version of Problem 2 in which

3

,f ri(t) = 0 . This problem is further considered in Appendix B within the con-
é | text of examining the influence of X's combat objectives on his time-sequen-
? i tial fire-support policy. The optimal fire-support policy for Problem 2a

g i (under the assumption that Xy > 0) is exactly the same as that for Problem 2
g ? (as given in Section 6.2.1 above).

§ 6.4 Problem 2b.

i It is of interest to consider a version of Problem 2a with temporal

é : variations in the effectiveness of Y,'s fire. This might model, for example,

g i

e -

2
3 A-36
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the eituation in which the X, forces move as a fairly compact unit and the

i
effectiveness of Yi's fire 18 strongly dependent upon the force separation
between xi and Yi . [We recall that the Xi forces are moving towards the

static position of Y, £ (see Figure 3).] Let us briefly consider this case.

i

2 2

¢, (1) k=l k=1
with stopping rule: tf ~-T=0.
dxi
subject to: Tl -ai(t)yi ,
(53)
dyi

Ty = —¢iciyi for 1 =1,2,

X5 9420, 6yt oy = 1, and ¢, 20 for i =1,2.

'
|
|
|

It will again sometimes be convenient to consider the single control variable

¢ defined by (3). As usual, we consider only the case in which xl(T) >0 .

6.4.1. Optimal Fire-Support Policy in a Special Case.

When enemy survivors are valued in direct proportion to the rate at
which they destroy value of the friendly forces (i.e. (43) holds), the optimal

fire-support policy takes a particularly simple form: for 0 <t < T
1 for yl/y2 > az(t)czvzl(al(t)clvl).

o*(t,%,3) = | ¢ for y,/y, = a,(t)e,v,/(a;(t)e,v)),s (54)

]

( 0 for y1/y2 < az(t)czvzl(al(t)clvl).
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where
da

1 1 1 43,
bg = cpf(eg*ey) +{a1(t) & a0 / (cytey)- (55

It should be noted that when al(t)/az(t) = constant, then ¢S = c2/(c1+c2) S0

that the solution is essentially the same as that for Problem 2 in this case.

6.4.2. Necessary Conditions of Optimality.

The necessary conditions of optimality for (53) are similar to those

for Problem 2 given in Section 6.2.2 above. The Hamiltonian is given by

2
H= -

piai(t)yi - ql¢cly1 - q2(1-¢)c2y2' (56)

i=1

The maximum principle again yields (5) as the extremal control law, and (46)

again holds (with a, replaced by ai(t)).

i
Computing the first two time derivatives of the switching function (6)

S¢(t) = -al(t)clvly1 + az(t)czvzyz,

S (t) = al(t)clvlyl(cl¢) - az(t)czvzyz(c2(1—¢)) - a6y + 8,CoV,Y5

we see that on a singular subarc [6], [16]

ylly2 = az(t)czvzl(al(t)clvl),
(-ql)/(al(t)vl) = ('qz)/(az(t)"z)’

with the singular control given by (55). The generalized Legendre-Clebsch

condition is easily shown to hold.

The results given in Section 6.4.1 follow from the usual backwards syn-

thesis procedure and the observation that (21) still holds.

A-38




6.4.3. Suggested Future Work,

It would be of interest to examine the optimal time-sequential fire-
support policy when w /(alv Y >w /(a ) (where a (T) = 3 ) We suggest
this as a possible future research task.

Let us consider some of the algebraic complexities of the above proposed
work. We will focus on the determination of the switching time T correspond-
ing to that given in Section 6.2.3 above. In this case ¢*(1) =1 for 0 < 7

ST and then

£
/
s (1) = afe vyt )220 1 £_[ M2
¢ 22Y f V P 8fV
¢2%2"2 1 2°2
a.c.v T ¢
T ) PSS fel - {a,(0)a;}do - [ {a,(0)/a }do}.
a,c,v, 0

£, f
where pf = ylly2 .

One must make assumptions about the functional form of ai(t) to carry

m
the above work along further. 1If, for example, ai(t) = ka t 1 , Where m, is
m i
a positive integer, then 81(6) = ka (T-0) i . We then have
i
Te O
1 f
[e {a,(0)/a;}do
0
m
1 m, ! m-k C.T
1 1
+ Y o - t@-ym et -1,
1 k=0 V1 (clT)

It appears to be very messy to determine L such that S¢(T=T1) =0, but

numerical methods might prove useful here.
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6.5. Problem 3.

In this section we will consider a version+ (see Section 6.1.4) of
Problem 1 as given by (2) in which the Y forces attack the static defense of
the X forces along a "front." We assume that the x1 force causes attrition

to the Y, force according to a "square-law" attrition process.+* The .ttrition

i

1 force by the attacking Yi is assumed to be negligibie. As before,

the X fire-support units (lenoted as W) deliver "area fire" against the Y1

of the X

forces. All Lanchester attrition-rate coefficients are assumed to be constant
during the "approach to contact." Furthermore, we assume that additional Yi

forces enter the "fields of fire'" of the X, forces at a constant rate denoted
as s,.
The combat situation described above is diagrammatically shown in Figure
6. It is convenient to restate the problem as follcws:
2
migi?i;e k§; WY (1)

with stopping rule: tf ~T=0,

dyi
subject to: ==K - ¢.c.y, (57)

y 20,6, +¢,=1, and ¢, >0 for 1 = 1,2,

~i'This is, of course, a special case of the general problem (1) (see Section 4)
graphically depicted in Figure 1 in which the following hold:

bi(t’yi) = E; = constant,

Bi(t’yi) = Ciyi where <, is constant,

si(t) = Ei = constant,

and ai(t,xi) = Ai(t.xi) = B(t,z) = ri(t) =0 .

For notational convenience we will again denote 31 as bi’ etc.

HSee Section 6.2 for a discussion of the rationale for this and subsequent
assumptions.
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Figure 6. Diagram of Time-Sequential Fire-Support
Problem For an Enemy Attack
(Denoted as Problem 3).
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where

0
Ki = -bixi + sy - (58)

As above, it will sometimes be convenient to consider the single control varia-

ble ¢ defined by (3). Again, we consider only the case in which vy > 0.

6.5.1. Necessary Conditions of Optimality.

The Hamiltonian is given by
H = q;(K;~¢c;y,) + q,(K,-(1-¢)c,y,). (59)

The maximum principle again yields (5) as the extremal control law, and the

adjoint equations are (for vy > 0)
. - * = =
qi = ¢iciqi with qi(T) Wy for i=1,2, (60)
Computing the first two time derivatives of the switching function (6)
S¢(t) = clKlq1 - czkzq2 ,

we see that on a singular subarc

_ o L0
yl/y2 = Kl/K2 = (sl-blxl)/(s2 b2x2), (61)

c.K

15193 = €Ky85s (62)

with the singular control again given by (51): ¢S = c2/(c1+c2). On such a

) d2
singular subarc we have — <

4 (&
3¢ | g¢2

8¢>‘ = —clKlql(c1+c2) so that the generalized

Legendre-Clebsch condition is satisfied only when K,, K, > 0 , since qi(t) >0

1* 72

vt for 1 = 1,2.
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In synthesizing extremals it is convenient to consider

£ £
c,Kw \y y
X1\ ¥
8. (t=0) = ¢ K.w (————-—)'—— -=1, (63)
¢ 27272 c2K2w2 K1 K2
and
[+
S¢(T) = -clKlql + c2K2q2 . (64)

From consideration of the generalized Legendre-Clebsch condition we see that

three cases to be considered (others are possible) are:

) Kp» Ky >0,

(B) Kl = K2 =0,

(C) &1“ KZ < 0.

Singular subarcs are not optimal for Case C.

6.5.2. Optimal Fire-Support Policy for bixi <sg, for 1i=1,2,

i

Without loss of generality we may assume that clKlw1 3_c2K2w2 , and

then there are twe cases to be considered:
(I) cll(lw1 = c2K2w2 ’

(11) clKlwl > c21(2w2 .

CASE I: c,Kw, = c K. w

1¥1"1 LAY l.e. w = k/(ciKi) for i = 1,2.

In this case enemy survivors are valued inversely proportional to the

produc - of their vulnerability to W's fire and net rate of change exclusive of

W fire support. Then (63) becomes S¢(T=0) = c2K2w2{yi/K1 - yg/Kz} . Noting
y y y
that 4122 = ¢ ) (1-¢)c 2 , the usual arguments yield that the
dt Kl Kz 1 Kl 2 K2

optimal time-sequential fire-support policy is given by: for 0 <t < T

1 for yl/y2 > Kl/K2 ,
* = + =
o*(t,%,y) c2/(cl c,) for y1/y2 Kl/K2 ,

0 for y1/y2 < Kl/K2 .
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CASE 1II1: clKlwl > c2K2w2.

In this case the solution has the same structure as that for Problem 2
as given in Tables II and III. The planning horizon may be considered to be
divided into two phases in a similar fashion. Details are to be worked out in

the future.

6.5.3. Optimal Fire~Support Policy for bixg =8 for 1 = 1,2,

In this case K, = K, = 0 so that (6), (60) and (64) yield that

1 2

f f
S¢(t) = clwly1 - c2w2y2 ,

whence follows that the optimal fire-support policy is given by: for 0 <t < T

cl(T—t)
1 for o > pge .
* -c2(T—t) £ cl(T-t)
¢ (t,x,y) =< any feasible value for pg e <p<pge s (65)
-c2(T-t)
.0 for PLpge R

where p =y_J/y pf <a2c2v2>< 2 )/( 1 > /(c,w,) , and p = [~pc, +
= . S = = C.W w ’ = -heC

12 alclv1 82V2 alvl 272 11 1
(l—¢)c2}p . An understanding of this case is essential for developing the solu~

tion for the next case.

0

6.5.4. Optimal Fire-Support Policy for bixi > e for 1 =1,2.

In this case it is never optimal for the W fire-support units to split

1 and Y2 (for a finite interval of time). The develop-

ment of a solution is much more complex than that for the previous cases and

their fire between Y

depends on an understanding of the results given in Section 6.5.3. Details have
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not been completely worked out at the time of the writing of this report, and
we would propose to ONR as possible future research the further study of this

important problem.

6.6. Problem 4.
As seen in Table I, Problem 4 is a version of Problem 1 (see Figure 2)
in which we may consider the X force to be the attacker and the Y force to
be the defender. Additionally, the attacking Xi force causes attrition to the
defending Yi according to a "linear-law" process+, while the defending Y

i

force causes attrition to the attacking Xi according to a "square-law" proc-

++
ess, Other aspects are the same as those for Problem 1. Thus, we have

2 2
maximize v, x, (T) - w, V. (T)} s
0, (£) {k§ 'k kz‘l Kk

with stopping rule: t_ -T=0,

f
dxi
subject to: e _aiyi’
66
&y, (66)
U e BRI Nt

X ¥y 2 o, ¢l + ¢2 =1, and ¢i >0 for 1i=1,2.

As above, it will sometimes be convenient to consider the single control variable

¢ defined by (3). For T < 4= , it follows that yi(T) > 0 8o that we need

1.See Section 6.1 for an explanation of terminology.

1“rBr:ackney has hypothesized that such a situation occurs when both sides use
aimed fire, a defender's time to acquire an attacker is negligible in comparison
to the time to kill an acquired target, and the time for an attacker to acquire
a defender is relatively large by reason of his opponent's remaining under cover
in defensive positions (see pp. 32-33 of [5]).

A-b>




At A AT

¥3
5
i
P
e

-

‘*:“

Bear.
gL

A

P

b Ly s odigy ¥

only be concerned with the SVIC's X >0 for 1i=1,2. Again, we will consider

only the case in which xi(T) >0 .

6.6.1. Optimal Fire-Support Policy in a Special Case.

When enemy (i.e. Y) survivors are valued in direct proportion to the
rate at which they destroy value of the friendly forces (i.e. (43) holds) and
friendly survivors are valued in direct proportion to the ratio of their fire

effectiveness to that of their supporting weapons (i.e. we have that

v, = K bi/ci for i=1,2), (67)

the optimal fire-support policy takes a particularly simple form (assuming that

1.
-c; < blx1 - bzx2 < c2) :t for 0<t<T

£
1 for p > ps .
* £
¢ (t,x,9) = ) ¢, for p=op., (68)
£
0 for p < pS .

L}

£
where p—yl/yz,ps- 222/(a111),and p = {-bx, + byx, - ¢c, +

= 0 , we see that the solution reduces to that for

i

(1—¢)c2}p . When b1 b2

Problem 2a.

6.6.2. Necessary Conditions of Optimality.

The Hamiltonian is given by

2
H= - i;; PyaY; ~ qul(blxl+¢cl) - q2y2( ¥y F (1-¢)C2)- (69)

+This condition is satisfied if, for example, !blxl 2 2| < minimum (cl,c ).

A-46




ORI TR \TE T WIS ¢ TR T SYIATIPIT
LR ML

I TR R P

S S A >y

St N O T s

T e e a3 Bk % B et e o YA

The maximum principle again yields (5) as the extremal control law, and the

adjoint equations are (for xi(T) >0)

Py

]
<

biyiqi with pi(T) = v,

and (70)

9y

*x - =
a;p, + (bixi + ¢ici)qi with qi(T) v, for 1 =1,2.

Computing the first two time derivatives of the switching function (6)

. - - +
Sy(t) = -a;cpyy) +asepyy, s
S¢(t) = cl(-ql)yl(alblyl) + alclplyl(blx1 + ¢c1)

-cz(—qz)yz(azbzyz) = azczpzyz(bzxz + (1-¢)C2) )

we see that on a singular subarc

11y, = a,e,p,/(areq0)) (1)
(=4,)/(a;p;) = (-q,)/(azp,) » (72)
with the singular control given by

The generalized Legendre-Clebsch condition is satisfied, since —{—

b {2 auz
99 dt2 99

alclplyl(c1+c2) >0 .

In synthesizing extremals it is convenient to consider (21),

-]
85 (T) = 21C P 1Y) = 3yCoPyY, o
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and
W

°S°(T==0)= £ vf—-l—- —ﬁ—- + b.x, + ¢c
) 31191 431511 av J\ev; 11 1

£ N AAYAL
= 3,85V, ¥, 3,C,V,Y, (;;;; E;;; + b2x2 + (1—¢»)c2 s

whence follows the results given in Section 6.6.1 by the usual arguments using

(43) and (67).

6.7. Problem 5.

As seen from Table I and Figure 1, Problem 5 is a version of the general
fire-support problem (1) which corresponds to the addition of fire-support units
(denoted as Z) to the enemy Y forces in the basic scenario of Problem 1 (see
(2) and Figure 2). These Z fire-~support units engage the X forces and cause
attrition to X, according to a “square-law" attrition process+ with the cor-
responding Lanchester attrition-rate coefficient being denoted as 4y Addi-
tionally, when the W fire-support units engage the enemy Z units in counter~
battery fire, we assume that an enemy fire-support unit is engaged as a point
target and that the W units have the capability to sense when an enemy support-
ing unit has been destroyed so that fire may be immediately shifted to a new

target (with the W fire uniformly distributed over the Z survivors). Thus, we

have the following fire-support problem

TThis corresponds to assuming that "small groups" of the X, force are attacked

i
as point targets by the Z fire-support units and that the time to acquire such

targets is negligible compared with the time to destroy them. Brackney [5)

postulates that such is the case when thke Xi forces essult the Yi positions.
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¢1(t) 1 k=1

2 2
maximize{kg "k"k(T) -1 wkyk('r)} >

with stopping rule: t - T=0,

dx

i
subject to: qc Ty e

dyi

z,

FraiaL e S Z L A

dz

Xi0Y4

at = ‘(1'¢1_¢2)B >

»2 2 0, ¢1+¢2 <1, and ¢i >0 for i=1,2.,

(74)

For the analysis presented here, we assume that xi(T), yi(T), and z(T) >0 .

As was the case for Problem 1 (see Sectior86.l.1 and 6.1.2 above), with-

out the use of simplifying approximations (see Section 6.1.4) the determination

of the optimal fire-support policy is (hopelessly) complex.

however, that the Hamiltonian is given by (for X(s¥402 > 0)

2

2
H=- 121pi(aiyi + (!iZ) - izlqi(bixi + ¢iciyi) - P(l"¢1"¢2)3 .

The maximum principle yields that

1 £ 4
. or kl > max(O,KZ)
0,7 (t) =
0 for Kl < max(O,Kz)
and
1 for > max(0,K,)
¢2*(t) = Kz Kl
0 for K2 < max(O,Kl)
where
Ki = Ci(-qi)yi = 8("‘P) .
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The adjoint equation are given by (7) and (assuming that z(T) > 0)

2
P = I op with p(T) =0 . (78)
k=1
In the next section we consider the simpler case of the above problem

(74) in which bi =0.

6.8. Problem 6.

As seen from Table I, Problem 6 is a simplified version of Problem 5
(setting bi = 0 and adding friendly replacements at a rate denoted as ri(t)).
Problem 6 is analogous to Problem 2 with the addition of enemy fire support

units (denoted as Z)(see Section 6.7 above). Thus, we have

2 2
maximize { )} vx (T) - § wy (D},
b, (6) {k=1 K T ey W }

with stopping rule: tf -T=40,

dxi
subject to: i —aiyi-aiz + ri(t) ,
dyi
d& T TNy o (79)
dz

EE = -(1—¢l-¢2)8 ’
xi’yi’z >0, ¢’1 + ¢2 <1, and ¢i >0 for i=1,2,

For T < + = , we have yi(t) > 0 always so that the only SVIC's that must

be considered are Xy 2 3_0 for 1 =1,2 . In the analysis presented here,

however, we will assume that Xy, 22 0.

A-5Q




The optimal time-sequential fire-support policyf in the special case in
which zf = z(T) > 0 and enemy survivors are valued in direct proportion to
the rate at which they destroy value of the friendly forces (i.e. (43) holds)
is shown in Figure 7. It is impossible for it to be optimal for W to divide

his fire between Xi and Z for a finite interval of time, since

ﬁi(t) = aiciviyi(ci¢i) # 0. However, it is possible to have an Xl - Xz split.
Considering D(t) = Kl(t) - Kz(t) , we find that (49) and (50) agaim hold on
such a singular subarc with the singular control given by (from B(t) = 0 when
D = s: s=
D(t) = 0) ¢ c2/(c1 + c2) and ¢, c1/(c1 + c2).

In the future, we will give information for the wvarious extremals shown in

Figure 7 (see Figur2 4 and Table I on pp. D-43 through D~55 of [37]). For ex-

CI 1+

F
ample, for path PAl we have yi/yi > a2c2v2/(a1clv1) and

¢I<t)= 1,

for 0 <1< T?l ’

45()= 0 .

The switching time TAl is given by Kl(T = T?l) = 0 where

1

£, 1"
K,(1) = a,v,y, (e -1) -8
1 1'171 e

2 :
Z YVt + c¥1¥, -

Al

It ray be shown that Kl(r) > Kz(T) for 0ty .

~I.The details of the development of the optimal time-sequential fire-support

policies for Problems 6 through 10 are omitted. These will be given in the
future.

fTThe maximur principle again yields (75) and (76).
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Figure 7. Diagram of Optimal (Closcu-t.0op) Fire-Support
Policy for Problem 6 when zf> 0 and

wi = kaivi for 1 =1,2

(not drawn to scale).
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6.9. Problem 7.

If we let the attrition by the enemy Z fire-support units in Problem 6 be
2 "linear-law" attrition process (see Sections 6.1 and 6.2 for a discussion of
this assumption), then the resulting problem we denote as Problems 7 (see Table

I). We have then

2 2
maximize v, x (T) - w, vy, (D{ ,
$,(t) G e ® L e

with stopping rule:

dxi
subject to: It - e

te - T=0,

171 T %4%4% »
dyi

qc  Th%yYy o (80)

dz  _ .. _ _
E = (1 ¢l ¢2)‘5 ’

X,Y502 >0, ¢1 + ¢2 <1, and ¢i >0 for i=1,2.

Yor T < += , we have yi(T) > 0 so that tae only SVIC's that must be con-
sidered are X;,2 >0 for i=1,2. In the analysis presented here, however,
we will assume that x .,z > 0.

The optimal fire-support policy is snown in Figure 8 for the special cese
in which zf > 0 and enemy survivors are valued in direct proportion to tne
rate at which they (i.e. Yl and Yz) destroy value of the friendly forces
(i.e. (43) holds). Although it is not impossible for it to be optimal for W
1%
val of time, we intuitively feel that this is an unlikely situation. For the

to divide nhis fire between Ki and Z or X and Z for a finits inter~

X, - X2 split, we have

1
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¥i/¥, = 3,0,/ (aye1p))s
and

(‘qlealpl) = (-qz)/(azpz)a

with the singular control given by

¢§ = c2/(cl + c2) + (al - az)z/(cl + c2),
4 = cy/(ey * ) + (a, = a)z/(ey + ¢y, (81)
0 <o, 05 <1,

The switching time tf shown in Figure 8 is given by Ki(T = Ti) = 0 , where

2
X (0 = aiciviyi %(eeT -1 - B<kzl°‘k"k’{> T

£ ( bt _ 1 _ % ) % £14 £ (82)
52 & T k=1"kak"kyk C4¥i¥y -

We also have
[-]

p = (¢1cl - ¢2c2)p ’
where p = yl,’y2 . Then on the singular subarc (corresponding to the Xl - X2
split) for 0 < t < rf , we have

£
¢ (al- az)z T
p(1) =p’e

6.10. Problem 8.
In the previous case (Problem 7) if the W fire-support units cause "linear-
law" attrition of the Z fire-support units, then we obtain Problem 8 (see (1)

and Table I). 1In this case the optimal time-sequential fire-support poli., ‘.r
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W may consist of dividing supporting fires between 2 or more of the enemy units.

Details will be given in the future.

6.11. Problems 9 and 10.

These are analogues (see Table I) of Problems 1 and 2 in which the W fire-
support units cause attrition to Y, according to a "square-law" process (see
discussion of such an assumntion in Section 6.7). In this case, it is never

optimal (assuming, for example in Problem 9, that albl ¥ azbz) for the W fire-

support units to split their fire between Y1 and YZ for a finite interval of

time. Details will be given in the future.

i 7. Consideration of Suppressive Effects of Supporting Weapsons.

Suppression may be considered to be the neutralization of a target (i.e.
degradation of its combat capability) without actually destroying it (i.e. non-
lethal effects)(see [17]). Although the objective of many fire-support missions
(see [17] for further references) is suppression, a major deficiency in evaluating

supporting weapons has been lack of mathematical mode].tS.l~

of suppressive effects
[17]. 1In this section we will briefly sketch some models which consider suppres-
sion and provide insights into optimal time-sequential fire-support allocation.
These initial results are of a preliminary nature and hopefully will be refined
in the future. The modeling of suppressive effects has been referred to as being
in an "embryonic" state (p. 7 of [17]).

Su., -ssiun mey be modeled either descriptively or prescriptively. In gen-

eral, two ways to model suppressive effects within the context of Lanchester-

type foramulstions are:

1-'l’nis includes development of a scientifically valid operational definition of
suppressicn.
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(a) modify Lanchester attrition-rate coefficients to reflect degraded

fire effectiveness as more firers become suppressed,*

(b) consider combatants of a given class to be in different states (in
the simplest model there are two states: unsuppressed and suppressed)
with different fire effectliveness and vulnerability to enemy fire in

each state; this approach requires model of state transitions.

Accordingly, for purposes of fire-support allocation two ways of modeling sup-
pressive effects in Lanchester-type formulations are:

(A) degrade effectiveness of enemy fire as a function of fire effective-

ness of friendly supporting weapons,

(B) give combatant choice as to his state (posture); in simplest model,
there are two states (unsuppressed and suppressed) with the combatant
in the unsuppressed state being both more effective in his fire and
more vulnerable to enemy supporting fires.

t

We will briefly sketch ' work along each of these lines in the next two sections.

7.1. Suppression Modeled Descriptively as a Degradation of Combat Effectiveness.

We consider a simple model (see p. 470 of [28]) f~r the suppressive effects

of supporting fires. Let Sc dzcaote the "lethality" of the W supporting fires.

// Cc ~\

1)
al(Sc)
Artillery

(small arms)
effectiveness

TA more sophisticated approach would be to also modify the appropriate Lanchester
attrition-rate coefficients to reflect decreased vulnerability of suppressed
combatants.

HDetails of the development of optimization reaults are omitted.
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For a "linear-law" attrition process with a constant number of W units, comn-
stant rate of fire, etc., we have Sc = cy¥y - Assuming that suppression causes
reduction in fire effectiveness and that suppression depends on the "density of

lethality," we have

a, = al(cl) .
If we assume that this functional dependence is linear, then

o sat
a; al(l - cl/c1 )

where ciat denotes the level of supporting fire density at which the fire of

Yl ceases to be effective.

Applying the above to the situation considered in Problem 2 (with ri(t)£0),

sat _ sat _

we obtain for ¢, < ¢y and C; T =g the following:

1 -—

2 2
maximize { } v x (T) -] wy (D},
0, (6) k=1 Kk kZJ. Kk

with stopping rule: te - T=0,

i
subject to: T - a- asd;)ay, s

T T 4% (83)

XYy 2 0, ¢1 + ¢2 =1, and ¢i >0 for i=1,2,

where 0 <a, <1 and o, =1 (i.e. Ve use (3) and assume that

1 2 a1¢y) = ¢9)-

xiﬂT) > 0. Then when enemy forces are valued in direct proportion to the rate

[

at which they destroy value of the friendly forces (i.e. (43) holds), the

optimal fire-support policy is again POLICY A as given by (44). When
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vll(alvl) > v2/(a2v2), the optimal policy is as given in Table II with F(1)

of Table III being replaced by

1 W 1 -C, T 1l W 1
F(1) =t + -——(—-L+—) e 1 - —--( 2 +-—) ,
¢

and similarly for G(r;pf).

7.2. Suppression Modeled as a Rational Decision Process: A Differential Game
Model.

In this section, we will consider suppression by supporting weapons to be
the consequence of a rational decision process in which a combatant chooses his
combat posture in order to "best" attain his combat objectives. Within the
context of fire-support allocation, this may be formulated as a two-sided opti-
mization process in which the friendly forces choose their time-sequential fire-
support strategy and the enemy forces choose '"posture strategies."

Let us again consider the situation of Problem 2 as shown in Figure 3. We
consider each member of the Yi force to be in either of two states: unsuppressed
or suppressed. Let Yi1 denote the number of Yi that are unsuppressed and Y42
the number suppressed. Corresponding Lanchester attrition-rate coerfi-ients are

denoted as aij and cij . We assume that

a with 0<a<l,

12~ %341
and

Cip = Y4y with 0<y<1,
i.e. a Yi combatant in the suppressed state is both less effective in his fire

against Xi and also less vulnerable to the W supporting fires. Then we may obtain

the following differential game if we let W decide how to distiribute his
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supporting fires over Y, and Y, and let Y, choose the state he is in (i.e.
either unsuppressed or suppressed):

2 2 2
maximize minimize vwx (T) - ) w, y (T))
® y kgl K kzl k( 321 k3 ’

~ ~

with stopping rule: te - T=0,

dxi
subject to: T " -ai(yil + ayiz) ’

AR AR AR (8)

<u, for 1 =1,2.

i

Although it is probably essentially impossible to obtain a complete solu-
tion to the differential game (84), this model does provide some valuable in-
sights into when it is optimal for Yi to be suppressed or not (giving consider-
ation to the time-sequential fire-support strategy of W). Deteils will be given
in the future. The theory of SVIC's (see [36]) is essential for solving this

problem.

8. Discussion.

In tl.is section we will review our above work on the determination of opti-
mal time-sequential fire-support policies in several situations of tactical interest
and discuss what we have learned about the dependence of these policies on the

functional form of the combat attrition model. Iu our study, we have congidered
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in various levels of detail a sequence of ten one-sided, time-sequential combat
optimization problems (see Section 5). The conclusion given here are based on
comparing and contrasting the solutions to these problems. We developed solutions
to these problems by applying modern optimal control theory (see [6], [18], [24])
(assuming, if necessary, that no force level ever became zeto*).

The results presented in this appendix are of a preliminary nature, being
based on an initial examination. We have tried to consider many different problems
and versions of problems, and this has led to incomplete results due to time con-
straints. We hope to refine such results in the future. We feel that this is an
important and promising area of work and propose such further work to ONR as a
future research task.

We saw that the optimal time-sequential fire-support policy could be quite
complex for one of these problems, since if there were n types of forces on
both sides, then the optimal (closed-loop) policy could depend on as many as

tt This may be called the (usual) "curse of dimensionality."

(nt+l) state variables.
Thus, we saw the need for making approximations in order to simplify the optimal
policy. We accordingly stressad some simple versioas of our basic problem (e.g.
Problems 2 and 3) and developed complete solutions in a few such cases and par~
tial ones in others. We would propose to ONR as a future research task the com-
pletion of this program of solving the problems in the sequence of problems given
in Section 5. When simplifying approximations are not made, it appears to be a

st aightforward (but messy) matter to develop a numerical solution by computational

means. This may not be too convenient, however, 1.f the optimal solution depends on

a large nunber of state variables.

+This assumtion is relaxed for problems considered in Appendix C. Breakpoints
are considered for forces ir these models there.

T*Essentially, time behaved as an additional state variable in these fixed-length
planning horizon problems.
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We saw that the optimal time-sequential fire-support policy is strougly
influenced by the nature of the combat attrition process. Indeed, the policy's
basic structure is different in attack and defense situations. For example,
for the enemy attack considered in Problem 3, it was never optimal tr, divide
supporting fires between enemy attacking forces. When the friendly forces
attacked (again with a "linear-law" attrition process of enemy infantry units
by supporting fires), however, the optimal fire-support policy depended on é
enemy troop density, and it was sometimes optimal to split supporting fires
between several enemy troop concentrations. As we had seen earlier [30], a
"square-law" attrition process for enemy infantry units leads to concentration
of supporting fires as an optimal policy, while a "linear-law" process can lead
to splitting of fires. Thus, the determination of the appropriate uathematical
description of the attrition processes (especially for supporting fires) appears
to be an important task for future work (as well as estimation of attrition-rate
coefficients). ‘ y

We also obtained some insights into valuation of combat resources. When
surviving enemy target types were valued in direct proportion to the rate at
which they destroyed the value of friendly forces, we obtained a simple form for
the optimal fire-support policy which was also very intuitively appealing. Such
a simple optimal policy even resulted when there were temporal variations in the
effectiveness of enemy defensive fires (reflecting, for example, the "closing" of

one force with the other). We also examined optimal fire-support policies when

suppressive effects of the supporting weapons were additionally considerad. If
enemy survivors were valued in direct proportion to their destruction of friendly
value, then the optimal fire-support policy was exactly the same for a linear de~
gradation of enemy fire effectiveness by supporting fires as for no suppressive

effects. Otherwise, the structures of the optimal policies were similar, although
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computational investigations are needed.

Thus, we see that the optimal time-sequential allocation policy for sup~
porting fires is strongly dependent on the mathematical nature of the attrition
caused by these fires. The attrition process itself depends on such factors as
target acquisition, command and control, battlefield intelligence, weapon system
performance characteristics, tactical situation, etc. Additiomnally, all these
determinations were made for a deterministic attrition process and perfect state
information. The effects of uncertainty on the optimal fire-support policy should

be investigated. We hope to investigate such aspects in the future,

9. Conclusions.
Based on the research reported in this appendix, we conclude that:

(1) an optimal time-sequential fire-support policy depends on the dynamics
of combat and target priorities evolve dynamically over the course of
battle,

(2) the nature of the attrition process (assumed to be Lanchester-type) for
a supporting weapon system has a major influence on the structure of
the optimal time-sequenticl fire-support policy as do those for other
force interactions,

(3) the optimal time-sequential fire-support policy for an attack (approach
to contact) is different in structure from that for the defense of such
an attack,

(4) a "linear-law" attrition process for a supporting weapon system against
enemy target types may lead to supporting fires being divided tetween
enemy targets ir an optimal time-sequential fire-support policy,

(5) a "square-law" attrition process always leads to concentration of fire
on a single target as the optimal policy,

(6) Jjudicious choice (i.e. valuation in direct proportion to their rate of
destroying friendly value) of the value of enemy survivors (computed
according to linear utilities) leads to a simple fire-support policy
that is intuitively appealing; this policy remains optimal even when
there are temporal variations in the affectiveness of enemy fire,
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(8)

simple '"nearly optimal" fire-support policies may be developed through
judicious approximations to the combat attrition process,

if suppression is a linear function of the kill rate of the supporting
weapon system, it has no effect on the optimal fire-support policy when
enemy survivors are valued in direct proportion to their rate of de-
struction of friendly value (i.e. the optimal policy is not changed if
the suppressive effects are excluded from the model).
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APPENDIX B: An Examination of the Effect of the Criterion

Functional on the Optimal Fire-Support Policy

1. Introduction.

As we first pointed out in [16] (see also [18]), for the purposes of
military analysis, it is convenient to consider that there are three essential
parts of any time-sequential combat optimization problem:

(a) the decision criteria (for both combatants),

(b) the model of conflict terminatior conditions (and/or unit break-
points),

(c) the model of combat dynamics.

It is important for the nilitary analyst to understand the relationship between
the nature of system objectives and the structure of optimal (time-sequential)
combat strategies. Of particular importance is the sensitivity of the structure
of optimal combat strategies to the nature of military objectives.+ In a time-
sequential combat optimization problem the combatant objectives are quantified
through the criterion functional. If the optimal combat strategy (and asso-
ciated payoff) were discovered to be quite sensitive to the functicnal form of
the criterion functional, then one would know that great care must go into the
selection of the functional form.

Fugh and Mayberry [11] have suggested.H that an appropriate payoff or

objective function (in our terminology, criterion functional) for the quantita-

tive evaluation of combat stratcgies is the loss ratio (possibly calcul d

using weighting factors for hcterogeneous forces). They state [11] that an

+See [11]) for a discussion of the influence of political objectives on military
objectives for the evaluation of (time-sequential) combat strategies.

HHowever, Pugh and Mayberry [11] do not explore the consequences of various
functional forms for t.. criterion functional.
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"almost equivalent" criterion is the loss difference. In this appendix we
;111 examine to what extent this is true. In cases of either no replacements
or a fixed-length planning horizon, it is easily seen that these criteria are
equivalent to the ratio of survivors or the difference in survivors, respec-
tively. It is such a case of no replacements that we will examine here.

Furthermore, it is of interest to consider the military worzh (i.e.
utility of military resources) of survivors. In almost all the work that has
appeared in the open 1iterature* a linear utility has been assumed for valua-
tion of survivors, and some form of net military worth (i.e. the difference
between the military worths of friendly and enemy survivors) has been taken
as the payoff (i.e. criterion functional) (see, for example [9], [12)-[17],
[20]).++ One reason for assuming such linear utilities is one of mathematical
convenience: the boundary conditions for the dual variables do not depend on
state variable values (at least when no system constraint involving the state
variables is active).

The only systematic examinations of the influence of the nature of the
criterion function on the structure ¢f optimal time-sequential strategies
Fnown to the author are his own investigations [12]-[16], [19], [20]. In [12]-

trt

{16] a linear utility was assumed for the military worth of the numbers of

1'The only exception known to the author is the paper by Kawara [5] in which the
payoff is the ratio of opposing infantry strengths (measured in terms of total
numbers) at the "end of battle" (see also the differential game studied in
Appendix D of [19]).

HA comprehensive review of pertinent literature prior to 1973 i»n the field of
optimizing tactical decisions (using Lanchester-type models of warfare) is to
be found in [17].

+++This means that the boundary conditions for the adjoint variables (at least
when no state constraint is active) are independent of the values of the state
variables. Serious computational difficulties may arise when a nonlinear utility
is assumed. The effect of assuming a nonlinear utility for military resources
upon the ¢valuation of time-sequential combat strategies has apparently never
been studied.




each surviving weapon system type, and tii2 criterion functional (payoff) was
taken to be the net military worth of survivors (i.e. the difference between
the military worths of friendly and of enemy forces). We then examined how
the optimal time-sequential fire distribution policy depended on the assign-~
ment of these linear utilities in [1%] through [16]. 1In other words, we
examined the sensitivity of the optimal time-sequential combat policy to para-
metric variations in the assigned linear utilities for survivors. It was
shown, for example, that the fire-~distribution problems studied in {[12]-[16]
all possessed simple solutions when enemy survivors are valued in direct pro-
portion to their kill capabilities (as measured by their Lanchester attrition-
rate coefficients against the (homogeneous) friendly forces).

In [19] is the only study known to the author of the consequences of
nonlinear utility for survivors. We determined (at least for the case in which
the appropriate side's (in Kawara's case, the defender) supporting weapon
system* is not annihilated) tb:2 most general form of the criterion functional
which leads to optimal fire-support strategies being independent of fcrce levels,
and we showed that the criterion functional chosen by Kawara [5] is a special
case of this. In other words, Kawara's conclusion [5] that optimal fire-support
strategies do not depend on force levels only applies to problems with the
special type of ~riterion functional used by Kawara and is not true in general.
No other examination of the dependence of optimal strategies upon combatant
objectives is known to the author.

Thus, the objective of the research reported in this appendix is to
determine the sensitivity of the optimal time~sequential fire--support policy

to the functional form of the criterion functional. Clearly, this must be

1'See {22] for a brief discussion of the distinction between a "primary" weapon
system (or infantry) and a "supporting' weapon system.
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examined for a concrete problem. Consequently, our research approach is to
consider several different criterion functionals for the same tactical situa-
tion involving a time-sequential allocation of supporting fires. The tactical
situation that we have chosen to examine is the "approach to contact' during
an assault on enemy defensive positions by friendly ound forces. Addition-
ally, we will consider an analytically tractable mathecu..'ical version of this
problem (see Appendix A) so that we may make quantitative comparisons between
the optimal policies corresponding to the various criterion functionals. Corre-
sponding to each different criterion functional is a different optimization
(here optimal control) problem. Each of these has been solved, and the corre-
sponding optimal fire-support policies will be contrasted.

In this appendix three different criterion functionals are considered,
and it is shown that the difference and the ratio of the militéry worths of
friendly and enemy survivors (linear utilities) as criterion functionals may
lead to exactly the same optimal policy. This is not true when we consider
the weighted average of force ratios of opposing infantry at the time that the
supporting fires are lifted as one of the criterica functionals. This objec~
tive leads to an essentially different type of optimal fire-support policy. We
have decided that the two former criterion functionals (i.e. the difference
and the ratio of military worths) are appropriate for am "attrition" strategy,
whereas the weighted average of force ratios is appropriate for a 'break:hrough"
strategy. [In the latter case, the attacking force tries to overpower f:he
deferders at one place along a front and then pour reinforcements through the
breach in the defender's defenses in order to "penetrate" behind the enemy

lines and disrupt eremy command, control, and communications.]
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3 After carrying out the above research program, future research directions
’ are suggested. We feel that it would be very worthwhile to extend the above

study to cases of nonlinear utilities for survivors.

2. Comparison of Optimal Fire-Support Policies.

In this section we give the fire-support allocation problem for which
the optimal policy is developed according to three different criterion func-

tionals. These time-sequential fire-support policies are then compared.

2.1. The Fire-Support Problem.

Let us consider the attack of heterogeneous X forces against the static
defense of heterogeneous Y forces along a "front." Each side is composed of
primary units (or infantry) and fire-support units (or artillery). The X

infantry (denoted as X, and X2) launches an attack against the positions

1

held by the Y infantry (denoted as Y, and Y2). We may consider X, and X i

1 1 2

to be infantry units operating on spatially separated pieces of terrain. We
assume that the Xl infantry unit attacks the Yl infantry unit and similarly

for X, and Y, with no "crossfire" (i.e. the X, infantry is not attrited

2 2
by the Y

1

infantry). We will consider only the "approach to contact" phase

2
of the battle. This is the time from the initiation of the advance of the Xl !

and X2 forces towards the Yl and Y2 defensive positions until the X1 :

and X, forces actually make contact with the enemy infantry in "hand-to-hand"

2
combat. It is assumed that this time is fixed and known to X.

The Xi forces begin their advance against the Yi forces from a dis-
tance and move towards the Yi position. The objective of the Xi forces

during the "approach to contact'" is to close with the enemy position as rapidly

as possible. Accordingly, small arms fire by the Xi forces is held at a
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minimum or firing is done "on the move" to ‘acilitate rapid movement. It is

not unreasonable, therefore, to assume that the effectiveness of xi fire "on
i’+ We assume, however, that the defensive
Yi fire (for {1 = 1,2) causes attrition to the advancing Xi forces in their

the move" is negligible against Y

"field of fire" at a rate propertional to only the number of Y, firers. Let
a; denote the constant of proportionality. It is convenient to refer to the
attrition of a target type as being a "square-law" process when the casualty
rate is proportional to the number of enemy firers only and as being a "linear-
law" process when it is proportional to the product of the numbers of enemy
firers and remaining targets. Brackney [1] has shown that a 'square-law"
attrition process occurs+* when the time to acquire targets is negligible in
comparison with the time to destroy them. He points out that such a situation
is to be expected to occur when one force assaults another. Additionally, we
may consider the Y forces either to have no fire support units or that their
fire support is "organic" to the Y units (i.e. fire support units are inte-

grated with Y, and only those with Yi support Yi).

i
During the "approach to contact" the X fire support units (denoted as

W) deliver "area fire" against the Yi forces.+++ Let ¢i denote the frac-

tion of the W fire support units which fire at Y [We then have that

il
¢1 + ¢2 = 1 and ¢i 20 for 1 =1,2.] Then for constant ¢i there are a

constant number of fire support units firing at Yi’ since we assume that the

+It should be recalled that we have shown in Appendix A that such an approxima-
tion is necessary for reason: o. mathematical tractability in the fire-support
optimal control problem to be subsequently given.

H.'].‘o be precise, one can only conjecture that such an attrition process
probably occurs under the stated conditionms.

~l-HIn other words, we assume that X's fire support units fire into the (constant)
area containing the enemy's infantry without feedback as to the destructiveness
of this fire.
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W fire support units are not in the combat zone and do not suffer attritionm.
. In this case, the Yi attrition rate is proportional to the Yi force level
(see [21]; also [4]). Let c; denote the constant of proportionality. The
combat situation is shown diagrammatically in Figure 1.

It is the objective of the X force to utilize their fire support units
(denoted as W) over time in such a manner so as to achieve the "most favorable"
situation at the end of the "approach to contact" at which time the force
separations between opposing infantries are zero and artillery fires must be
1lifted from the enemy's positions in order not to also kill friendly forces.
This "situation” or "outcome" may be measured in several different ways and
is quantitatively expressed through the criterion functional (deroted as J).
Thus, we have the following optimal control problem for the determination of
the optimal time-sequential fiie-support allocation policy (denoted as ¢*(t)
for 02t T where T denotes the time of the end of the "approach to

contact') for the W fire-support units.

maximize J,
8, (£)
with stopping rule: tf -T=0,
dxi
subject to: Tt - T8y 1)
(battle dynamics)
dyi
Tl -¢iciyi for 1 =1,2,

with inirial conditions

xi(t=0) = x°

0
1 and yi(t=0) ¥y for 1 =1,2,

and
xl,xz,yl,y2 2 0 (State Variable Inequality Constraints)

01 + ¢2 =1 and ¢i 20 for {=1,2 (Control Variable Inequality Constraints),
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J denotes the criterion functional,

xi(t) denotes the number of X
A OR

i infantry at time t, similarly for

a; is a constant (Lanchester) attrition~rate coefficient (reflecting
the effectiveness of Y1 fire against xi),

ey is a constant (Lanchester) attrition-rate coefficient (reflecting

the effectiveness of W supporting fires against Yi)’

te (with numerical value T) denotes the eud of the optimal control
problem, and

¢i denotes the fraction of W fire support directed at Yi'

It will be convenient to consider the single control variable ¢ defined by

¢ = ¢l so that ¢2 = (1-¢) and 0= ¢ £ 1. 2

It should be noted that for T < +» it follows that we will always
have yi(t) >0 for i=1,2. Thus, the only state variable inequality con-
straints (SVIC's) that must be considered are Xy 2 0. However, let us further

assume that the attacker's infantry force levels are never reduced to zero.

This may be militarily justified on the grounds that X would not attack the
Y, positions if his attacking Xi forces could not survive the "approach to
contact." In Appendix C we consider some models in which this assumption is
relaxed and breakpoints are considered for the various forces. Unfortunately,

this leads to quite complex mathematical details.

2.2, Criterion Functionals Considered.

The three criterion functionals for which the optimal time-sequential

fire-support allocation policies will be compared are given in Table I. All
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Problem

Criterion Functional, J

2

) ukxk(T)/yk(T)

k=1

2 2
X v, x, (T) - Z w. vy, (T)
k=1 KK e KK

| pean

k

2
Zl wkyk(T)]

Table I. Summary of Problems Considered to Study Effect of
Criterion Functional on Optimal Fire-Support Policy.
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are functions only of the various numbers of combatants at the end cf the
planning horizon (i.e. at the end of the "approach to contact” at which time
the supporting fires must be 1ifted for safety reasons).

2
The criterion functional for Problem 1 (i.e. J, = 2 a, x, (T)/y, (1))
17k W

represents a weighted average of the force atios of opposing numbers of
infantry in the two infantry combat zones. The rationale behind this is that
in each combat area (i.e. the area of combat between X, and Yi) combat
(possibly hand-to~hand) between the Xi and Yi forces will follow the
"approach to contact" and the (initial) force ratio will be related to the
outcome of this subsequent combat action. The weighting factors L allow

one to assign relative weights to this combat between Xi and Yi in the

two combat areas.

2
The criterion functional for Problem 2 (i.e. Jz = 2 vkxk(T)
k=1
2

- Z wkyk(T)) represents the difference between the military worths (computed

k=1
using a linear utility for survivors) of the X and Y forces, whereas tl:. one

2 2 ]
for Problem 3 (i.e. J3 = [kzl kak(T)]/ [kzl wkyk(T)J) represents the ratio

of military worths. Both these functionals have been proposed+ by Pugh and
Mayberry {[11] as appropriate payoffs for the evaluation of combat strategies

and have hoen said to be "almost equivalent" (see p. 869 of [11]).

2.3. Optimal Fire~Support Policies.

In this section we give the optimal time-sequential fire-support policies

for the three problemérrstated in the previous section. In all cases we assume

that neither of the attacking infantry forces can be reduced to a zero force

+Actua11y, Pugh and Mayberry [11] talk in terms of los~-s. See Section 1 above
for a further discussion of this pcint.

+fAs slown in Table II, each of these problems corresponds to a different
criterion functional for the attackers.
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level during the approach to cont:act:."F Under thkis condition the solutionsf+
to the three problems are given in Table II with ancillary information on
switching times being given in Table III.

Let us sketch here the proofs of a few statements made in Tables II
and III. The existence of a unique nonnegative root to F(tsts) = for
wl/(alvl) = w2/(a2v2) follows from F(t=0) £ 0 and F'(t) >0V Tt 20. The

existence of two positive roots to G(T=T¢;pf) = 0 [here the second argument,
£ f f
s < <
p°, 1is a (fixed) parameter] for w1/(a1v1) = wzl(azvz) and Pp <P g

follows from G{t=0) > 0 for o° > p. and the fact that (letting T denote

L
the (unique) value of T at which the global minimum of the strictly convex

fuiction G(t) occurs) G(T=?;pf) = F(T) <0 for pf < p;. The latter is a

consequence of oi.> 0 and G(1=rs;pf=p§) = F(T=TS) = 0., It should be noted
p

that the fact chat G'(r=?}pf)

= 0 allows the parameter pf to be eliminated

from G(r=?;pf). It also follows that there is no solution (i.e. value of T¢)

9T
to G(t=t ;pf) =0 for pf > pf. The proof that ~5 = _(iF_)/(_B_I-_‘_) >0
$ S 8J3 8J3 ars
aF 9F -Cc3T
follows from Pyl 0 and = < 0 (the latter holding since (e ~1+c,T)
> 0).

For Problem 1 it is corvenient to introduce the "local" force ratio
r, = xi/yi, which represents the ratio of the numbers of opposing infantry in
each of the two combat areas (see Figure 1). The optimal time-sequential tire-

support policy is most conveniently expressed as an open-loop control in terms

+Initial {:rce levels and the known length of the approach to contact may be
sufficient t- guarantee this for a given set (or range of values) of Lanchcster
attritior-rate .oeffi.ients.

++For a discussion of the distinction between open-loop and closed-loop time-
sequential policies, see [16] or [20]. For deterministic models such as the
ones under consideration, the two types of policies are well known to be
equivalent.
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Table 1I. Optimal Fire-Support Policies for the Three Ptoblu..*

2
PROBLEM 1: 3 - ugl a X, (1)/y, (T)

For 0 £ t £ T, optimal (open-loop) time-sequential fire-support policy is
) o
1 for Fl(tl’r) -3 Fz(rz. 7

#(eir],55,T) = {
o o
0 for Fl(rl.‘r) s Fz(tzo'l‘).

vhere
ti ) xi/yi’ o ¢T
and T i c,T
0 ilie = -1 1 i
Pi(ri’r) = ai‘ici{[ql (—c—i—] - Fi(e -l-cit)}'
§ i
PROBLEM 2: J, = v.x (T) - vy (T)
27 b i oy Kk
and
i i
PROBLEM 3: J, = [ v, (T)]/[ VR ('r)]
3745 W oy Kk

Nonrestrictive Assumption: ull(alvl) 2 wzl(azvz)

Optimal (closed~lcop) time-sequential fire-support policy is

; - £, £
PHASE I _for 0‘t:<t1 T tl_(xljlz)_

1 for ylly2 > azczvz/(alclvl).
$*(t, 5,y = czl(c1+c2) for yllyz - nzczvz/(alclvl).
0 for y,/y, < °2°2v2/(.1°1v1)’
PEASE LI for T-T (i /y)Eet&T
(e, x,0) = 1,

where
. f f
rs for o ZDS.
f f
11 1'0 for DL‘D <°s'
£

0 for o <DL.

a.C. Vo) ( W v,
°"y1/y2’ and pL_[ZZZ] 22]/[8‘]

3 epvy) (agvy)  layvy )
NoTES: 1T
(1,) Tg is the unique nonnegative root of F(r-rs) - 0.
(2) For L < pf < pg, 1:¢ is the m:allet of the two positive roots of
G(t-ro;p ) = 0.

“
‘It is assumed that problem parameters and “nitial force levels are such that
xi('r) >0 for 1 =1,2,

1""&‘;ee Table III for the definitions of F(r) and G('r;pf). Thes: functions are

1 .
different for Problems 2 and 3 B-13
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4 Table I1I. Determinatior of the Switching Timea i and t N for Problems 2 and 3.

T

Nonrestrictive Assumption: w /(a.v,) = w./(a.v.)
1 i1 277272
b rs is the unique nonnegative ronot of F(r-ts) = 0. For pL < pf < oé. 1’
is the smailer of the two positive roots of G(T-T.;Df) = 0. )
5
B It has bern shown that
(a) bounas on T, are givenby 0 %1 < 1,
3 ' ¢ £ £ f
> (b) T is a strictly increasing function of p  for L £p <Py
R f f £ e
7 (c) there is no root to G(\"T.;D ) =0 for p > L
‘ o |
4 For PROBLEM 2: J, = ) v x (T) - ] wy (T
| 27 o K% oy Wk
H
g w -C,T w,
‘ F(t)'r+[—l—-a\1’]e 1-—-‘——;—-;—]
9 20 B A ‘1 %h
»: [ ¢ [3,¢,v a,c,v W w
; e KR RS R
; 1 2722 2°2°27V11 2°2
Bounds on Y. are given by:
(a) For "1/(81"1) = llcl.
w w W w
, Lo e - [2)[EH)
HMr 22 €1 2v) "
(b) For 1/c1 Swl/(alvl),
w w w w
; e Sl e | R e
; “ 220 WY 1 22
|
X 2 \ 2 .
] For PROBLEM 3: 1, = ( I vkxk(r)]/[ ) wkyk(T)]
; ksl k=1
Jowy -c, 1 J.w,
F(r) =1 + [c—l- - 13v1]e . [-—1— - i—é]
1 M ‘1 %M
b, |
* C, T a,c,v a,c,v v L2
oy « 2T Iy
1 27272 27272 11 272
k- ! Bounds on T, are given by:
(a) For J3w1/(a1vl) < llcl,
w W w w
J3[a\]; - a\ZI s‘TSSZ‘L{I -[ai]/[a\];]}'
11 272 1 272 11
(b) For l/c1 = J3 wll(alvl),
w w w w
c—l-{l-[a\zl]/[a‘ll]}srs‘%[a}r _a\zr] ’
4 2°2 11 171 2°2
j Also :;s -
3
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of the two initial force ratios, denoted as r:

- ri(t-o) for 1i=1,2, and
the known length of time for the approach to contact T. This optimal fire-
support policy is graphically depicted in Figure 2. In the initial force-

ratio space, the line with equation

|

o 2 o

where

R = clalcll(azazcz),

and
c c,T c,T
2 R 1 1 2" .
o [ T ]{cz (e = -1 clT) ;Ev(e 1 c2T)},
e " -1/ "1 2

is a "dispersal line" (see [12] or [16]) away from which all optimal battle
trajectories flow. This is shown in Figure 3. In constructing this figure,
use has been made of facts like the following: when ¢ =1 for 0t =7

a&ﬂ r§ = (0, then

-clrz/a2

1 f
;= ;I {(clrl—al)e + al}‘ (4)

For Problems 2 and 3, the optimal fire-support policy (expressed as a
closed loop control (see [16] or [20])) is most conveniently expressed in terms
of y1/y2 (i.e. the ratio of the numerical strengths of the two defending
infantry forces) and T =T - t (i.e. the "backwards" time or "time to go"
in the approach to contact). When enemy forces are valued in direct propor-

tion to the rate at which they destroy value of the friendly forces, i.e.

w, = kaiv for 1i=1,2, (5)

i i
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For r2 & Ry 2, rl-uaz.

¢*(t) = 0 for O0=tsT

¢*(t) =1 for OxtsT

NOTES: (1) R = alalcll(azazcz).

clT
(@)
¢ /\e2 -1

c c,T c,T
2 ){ R , 1 1, %
— (e © -1-¢,T) -5 (e © -1-¢ T)} .
(eczT_l cl 1 ) 2

(2) v

3) v

(4) r, = xi/yi.

Figure 2. Optimal (Open-Loop) Fire-Support Pollcy for PROBLEM 1.
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the optimal fire-support policy takes a particularly simple form (denoted as
POLICY A):

POLICY A: For 0Kt =T,

1 for y1/y2 > a2c2v2/(a1c1v1),
P* (1.0 = § cyf(epte,)  fer y /v, = asc,v,/(ayeqvy), (6)
0 for yl,/y2 < azczvzl(alclv‘).

This is shown pictorially in Figure 4 in which optimal trajectories are traced
backwards in time. It is convenient to note that, for example, when ¢(%) =

CONSTANT for 0 &£ t & 0, we have
N f
p(t) =9 exp{[¢cl-(1—¢)c2]'t}.

In this case, = () (see Table II), i.e. the entire approach to contact is

"1
"PHASE I."

When enemy forces are not valued in di-ect proportion to the rate at
which they destroy value of the friendly forces (without loss of generality we
may assume that wl/(alvl) > wz/(azvz)), the solutions to Problems 2 and 3
are considerably more complex as shown in Figure 5. As we see from Table II,
the planning horizon may be considered to consist of two phases (denoted as
PHASE I and as PHASE I1I) during each of which a different fire~-support alloca-
tion rule is optimal. We denote this policy as POLICY B ‘see Table 1I). During
PHASE I, POLICY A is optimal; whereas during PHASE II, it is optimal to concen-
trate all artillery fire on Y1 (which has been valued disproportionately high).
The absence or presence of PJASE II itself in the optimal time-sequential fire
support policy depends on the ratio of enemy strengths p = y1/y2. For Problem

2 the length of PHASE II (i.e. 'f1) is independent of the final force levels

of the attacking infantry units (i.e. xi and xg) but depends only on

B-18
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CASE for wll (alvl) = wzl (azvz). + .
1

\ o1

¢*-j2/(c\
(,', ~

<
///
¢* = 0

—

Backwards Time, = T =0

(“2“2“2)
11

Figure 4. Diagram of Optimal (Closed-Loop) Fire-Support Policy
(POLICY A) for PROBLEMS 2 and 3 when wll(alvl) =

w2/(a2v2) (not drawn to scale).

NomT ke A




ks CASE for wll (alvl) > w2/ (azvz). A

E2 1 e

(8 R TAM D e grm ot

SURFACE

X

(‘2°2V2)
1“ 21511

- — : ' 0

Backwards Time, T Tg T =0

NOTES: (1) p = ylly2

(2) See Table II for definitions of fL and pg.

i Figure 5. Diagram of Optimal (Closed~Loop) Fire-Support Policy
5 (POLICY B) for PROBLEMS 2 and 3 when w,/(a;v;) >

wz/(azvz) (not drawn to scale).
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Pf » yi/yi and the combat effectivenesi parameters (see equations (1)),

vwhereas for Problem 3 the length of PHASE II does depend directly on xi and
2 2
f £ f
X, through the criterion functional J3 = kzl X / kgl /% /A Thus, we
see that 11 @aay be quite different for Problems 2 and 3 when vll(alvl) >

wzl(azvz). [At the time of the writing of this report we have not performed

computational studies to compare values of 11 for these two problems.]

2.4. .Discussicon of Comparisom.

In this section we will contrast the strucrures of the optimal time-
sequential fire-support policies for the three problems considered above.
Let us tecalx that we have assumed in all cases that xi,xg > 0.

.For Problem } the optimal fire-support policy is to always concentrate
all artillery fire (i.e. supporting fires) on one of the opposing enemy infantry
units. This will maximize the force ratio (i.e. xi/yi) at the end of the
approach to contact in one of the combat aveas and may be considered to be a
"breakthrough" tactic. In other words, one coacentrates all fice support on
the key enemy unit in order to overvhelm it and effect a penetration.

On the other hand, for Problems 2 and 3 the optimal fire-support policy
may involve splitting of fires between the two enemy troop concentrations.

This property of the solution has been anticipated in our earlier work on the
optimal control of "linear-law" Lanchester-type attrition processes [13), [14]
(see also [19]). We may consider this policy to be an "attrition" tactic
which aims to wear down the overall enemy strength. The structures of the
optimal policies for Problems 2 and 3 are similar, although the switching times

(i.e. 1, and TS) may be appreciably different. ([More computational work

¢

needs to be done here, and we hope to do this in the future.] The functional

dependences of the switching times are also different. For Problem 2 the

B-21
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switchihg times (i.e. the ¢-transition surface) are independent.of the

attacking force levels (i.z. x, ana xz) (as is the optimal policy itself),

1
whereas for Problem 3 the switching times depend on the ratic of military

2 2
worthe (computed using linear utilities), i.z2. J3 = [ 2 vk?k(T)]/[ Z wkyk(t)].

k=1 k=1
. 9T ,
It has been shown (see 3ection 2.3 above) that 33§ >0 (although 1lim T "
. .03 J+oe
: 3

1 : ' .
e zn{(wll(alvl))/(wzl(azvz))}) so that the larger that J
time ie spent concentrating fire on Y

3 becomes, the more

1.

The most significant thing to be noted in comparing the optimal fire
support policies for these three problems is that the entire structure of the
optimal policy‘is changed by changing the criterion functional. In partiéular,

singular subarcs (i.e. the splitting of W's firg between Y, and Yz) do not

1
appear in the optimal policy for Problem 1, even though the necesaéfy condi-

tions for optimali.y on singular subarcs are exactly the same in all three of
these problems. Such singular subarcs are, of course, part of the solution

for Problems 2 and 3.

3. Development of dptimal Policy for Problem 1.

The optimal policy is developed by application of modern optimal control
theory. For Problem 1 it is convenient to introduce the force ratio in the

,iEh combat zone r, = xi/yt. Then Problem 1 may be written as

2
maximize )} a,r (T) with T specified,
k'k
¢, (t) k=1
dri
subject to: T 8y + ¢iciri for 1i=1,2, ¢))

¢1 + ¢2 = l’ ¢i =2 09 and r, 20 for 1 = 1,2,

i

where we recall (2). We also recall that we have assumed that ri > 0.




3.1. Necessary Conditions of Optimality.

The Hamiltonian [2] is given by (using (2))

.

H= 11(-a1+¢c1r1) + 12(-32+(1-¢)c2r2), (8)

so that the maximum principle yields the extremal control law

1 for s¢(:) >0,

) = { ©)
0 for S (t) <0,
where s¢(:) denotes the ¢-switching function defined by
S¢(t) - clllr1 - czlzrz (10)

The adjoint system of equations (again using (2) for convenience) is given by

(assuming that ri(T) > 0)

with Ai(T) =qa, for i=1,2. (11)

. *x
o Sl YO 1

Computing the first two time derivatives of the switching function

S¢(t) = -a;c 11 + a,¢ 2 99 (12)
we see that on a singular subarc we have [2], [6]
rlla1 = r2/a2. (14)
a;c.}; = a,coh,, (15)
with the singular control given by
/(c ) (16)

On such a singular subarc the generalized Legendre-Clebsch condition is

2
satisfied, since 3¢{£Lz(gg)} ajc A (egte,) > 0.

TSee [14] for a further discussion.
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Synthesis of Extremals.

In synthesizing extremals* by the usual backwards construction procedure .
(see, for example, [12] or [14]) it is convenient to introduce the "backwards"
time T defined by Tt =T - t. Rather than explicitly constructing extremals
and determining domains of coutrollability (see [12], [16], [20]), it is more
convenient to show that the return (i.e. value of the criterion functional)

corresponding to certain extremals dominates that from others. For this pur-

pose it suffices to determine all possible types of extremal policies as we
will now do.

We then have that
S .(1=0) = a.a.c (er/a -rf/A ) (17)
¢ 272721t e
where

(18)

R = aja ¢,/ (@)a,c)).

Without loss of generality we may assume that R 2 1. Then by (12) we have

.o
S,(t=0) = a,a

¢ 121%1 20, (19)

- O c

282%)

o

o
where S¢ denotes the "backwards' time derivative S¢ = dS¢/dT. Considering

(12) we may write

§¢<r) = 0,3,¢,(RO fa,) = (hfa)}. (o

222%2
It follows that S¢(T) >0 and ¢*(t) =1V t >0 when S¢(T=0) 20 for

R>1 (alsowhen S,(t=0) >0 for R = 1). We also have S¢(T) <0 and

¢

¢*(t) =0V t20 when S,(1=0) <0 for R = 1.

¢
There may be a change in sign of S¢(T) when S¢(T=O) <0 for R> 1.

In this case ¢*(t) =0 for 01 = T and then

+By an extremal we mean a trajectory on which the necessary conditions of
optimality are satisfied.
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c.T ¢
S¢(t? = azazcz{er(‘r)/a1 -e 2 rz(t)/az}, (21)

where T denotes the smallest value of T such that S¢(r-r1) = 0. It is
[ ] -]
clear that we must have § (tutl) 0. If 30(1-11) > 0, then we have a

¢

transition surface, and from (21) we find that

cztl
er(tl)/a1 -e rz(tl)/a2 = 0, (22)
where t1 =T =~ 11. From (20) we find that
1
0% <= 4inR. (23)
€2

-]
If 30(1311) = 0, the singular subarc may be entered, and then we have
1
T, = = n R. (24)
1l c
2
Ir this case we have
rf = era /a, + gkR)a /c (25)
2 172’71 272

f
where r, = ri(

for R> 1. When R =1 we see that once the singular subarc is entered (in

t=T) and F(R) = 1 + R(!nR-1). We easily see that F(R) > 0

forwards time), it is never exited by an extremal trajectory.
For the purposes of determining the optimal policy it suffices to

consider the follcwing four extremal policies.

Policy 0O: ¢*(t) =0 for 0Kt ST, (26)
Policy 1: ¢*(t) =1 for 0S¢t =T, 27)
1 for 08t <T- 11,
Policy B-B: o*(t) = (28)
0 for T - 7 = tsT,
1 +
where 0 = Tl < = fn R, and
2
c./lc,+c,) for 0Lt <T-1,,
Foifcy St ox(t) = { 212 1 (29)
0 for T - T =tsT,

fThe only extremal policies that are omitted here are those corresponding to
0 o
extremals which contain a singular subarc but r1/a1 td r2/a2.
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where Ty --f‘ fn R and r:/a1 = rg/az. It is readily seen from (17) that
2
Policy 0 yields Rri/a1 2 r§/az, etc. We also note that corresponding tc the

bang-bang pclicy (28) we have

) cltl

rl(tl) = {(clrl—al)e + al}/cl, (30)
)

rz(tl) =T, - a2tl 2 0.

3.3. Determination of the Optimal Fire-Support Pelicy.

As we have discussed elsewhere [13]-[16], [20], the optimality of an
extremal trajectory may be proven by citing the appropriate existence theorem
for an optimal control to the problem at hand; there are two further subcases:
(1) if the extremal is unique, then it is optimal or (2) if the extremal is not
unique and only a finite number exist, th:n the optimal trajectory is deter-
mined by considering the finite number of corresponding values of the criterion
functional.+ The existence of a measurable optimal control follows by Corollary
2 on p. 262 of [7]. 1In Sections 3.1 and 3.2 above, we have considered necessary
conditions of optimality for piecewise continuous controls (see p. 10 and pp.
20-21 of {10]). It remains to show that the measurable optimal control may be
taken to be piecewise continuous. This is proven by observing that if we con-
sider the maximum principle for measurable controls*+ (see p. 81 of [10]) in

the backwards synthesis of extremals, then the optimal control may be taken to

+It has not been possible to determine the optimality of a policy by citing one
of the many sets of sufficient conditions that are available (see [2], [14],
[20]). In particular, although the planning horizon for the problem at hand is
of fixed length, one cannot invoke the sufficient conditions based on convexity
of Mangasarian [3] or Funk and Gilbert [3] because the right-hand sides of the
differential equations (7) are not concave functions of r, and ¢i.

++We have taken the liberty of changing the sign of the adjoint vector of
Pantryagin et al. [10] (see p. 108 of [2]). When the admissible controls are
measurable and bounded, the Hamiltonian (8) only attains its maximum alwost
everywhere in time.
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be piecewise constant (and hence piecewise continuous).*

™ this s

We will now show that the optimal control must be constant.
done by ahgwing that the returns from both Policy B-B and also Policy 8*** for
a given point in the initial state space are dominated by the return corre-
sponding to a constant extremal contrul. We denote the valus of the criterion

functional corresponding to Policy O as Jo. that corresponding to Policy B~B

as JB’ etc. Then we have
, o 0 : :
4 4 c,T e T
1l R 2] 1 2 RT 1 2
J -aac{[—-—]-—ﬂb [—-]—-e -E—-l'—z(e -1)}, (31)
0 2272 aj ¢ a,] ¢, 1S3 g
0 4 c,T r° e,T -
1] R 1 2l 1 R 1 T
J aac{[——]——-e +(——]——-E—~[(e -1)+—'}. (32)
1 2°272 51 c1 az c2 c1 cz
o
e nac [flJ R ecl('l' 11) [EZ} ;L.eczrl
B 27272 a1 1 az c2 .
R, S (1Y) 1 €% '
Ef (e -1+c tl) E§ ([1+c2(T-11)]! ~1)¢, (33)
and
'i R
J '“zzz{[‘ﬂ‘f’ [‘7("
- 1
+———-Rlnk+-z(n-1)]}
1 2
?

This follows from the control variable appearing linearly in the Hamiltonian
(8), the control variable space being compact, and the switching function being
continuous for 0 £ t £ T. The maximum principle (also singular control consid-
erations) then yields that the optimal control must be peicewise constant almost
everywhere, since Sg(t) can change sign at most once. Hence, it may be con-
sidered to be piecewise constant (sece p. 130 of [10]). [The author wishes to
thank J. Wingate for pointing out this type of argument.]

H'rhis was first conjectured by Professor Frank Faulkner.

+HBy the principle of optimality (see [2]) it suffices for the purpose of

showing that a singular solution is always nonoptimal to consider a singular
extremal which begins with a singular subarc.
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where o = czl(c1+c2), a+B=1, and K = clczl(ci+c2). It is convenient

to define AJ =3 -J etc., and then

1-0 1 c’
0 c,T

T 1 c, T
- _Life ~ =1} 1 . 1 .
Mo “2"2“2§R[[a1” ¢ ] Z (o7 -imeyD)
1 1
c,T
-’ —1—czr):”, (35)

l_o c 2'1‘
- H_Z,} {&.-:_i.l_)
: 2l ¢ 2

r 1 1\ T c(‘l'-?)
AJ = q,a {R[{;l){e —ec }-Elz-(el,.e -cT)]

1-B 2%2%2 1 1 1
0 ¢.T
T 2'1 c,. T c, T
< A= - & (e 2 Yo (rot)e 2 hae,m], 36)
a c c 2 1 2
+ 2 2 2
and o
T c,T
111 1 1 ,a KT
AJl-S uZaZCZHa ”:c (Re ~ -1) - X (Re -1)]
V51
e, T c,T
+ X @BXT-KY) LR {e Ta- ——1—-} F-Rmr+ Y (R-l); (37
K R c R
1 €1%2 €2
We now state and prove Lemma 1.
. 2 .
LEMMA 1: Assume that T & T If AJl_o 0, then AJI—B 20
PRCOF:

(a) We consider for t 2 T

o c,t c,(t-t,) -
F(t) . rl e 1 __2 1 1 _ -(—:12- (eclt:_ecl(t 11)_01T1)}
1 1 1
o T
r % 1 c.T c.T
2ile ~1 1 21 21
-{[az)l 5 ] - Eg (e +c2(t Tl)e 1 czt):.

+ o = 40
In computing AJl-S we assume that rl/a1 rz/az.

B-28

e e e



Then &1, 20 ® F(t=r)) 2 0.

(b) We compute that
c,t c,{(t-1.) ° -, T c,T
F'(t) =Re L —e T 1! ){[—ri] -1 (q-e ! 1)} +1 (e 2 Llyy,
a c c
1 1 2
drl
(c) 1If Ty = a;s then Ty (t) £0 for 0Lt = t, so that

(rg/al) 2 (rl(tl)/al) 2 - It follows that F'(t) 2 0. If clrg >a

o

1’ then

F'(t) > 0. Thus, we always have F'(t) 20 for t 2 -

(d) By (a) and (c), we have F(t) 2 0, whence follows the lemma. Q.E.D.

LEMMA 2: For t:1 = T - 1:1 2 0, we have AJO-B 2 0 with

AJO-B >0 for tl > 0.

PROOF:

(a) We consider for 1:l 20

(o] c

(e 2 ) 1
reey = -2 [—z';‘] A

c,t

o
c,T. /(T 271 c.t
2°14f 2ite -1 1 21
+e {[ ][ ] e cztl)}.

We observe that F(t1=0) =0,
c,T

2.
e

3y

1%

R +a.l]} +

1 o
—-{—[(c r,-a,)e
a1 cl 1'1 "1

(b) We compute that F'(t:l)-= - x

c,t a c,t
{roe21___g(e21_
2 c
2
tlzo we have

1)}. Considering (22) and (30), it follows that for

(o]
C,T r c,t c,t
F'(t) = e 2 1{[——2] (21 - L (e 2 e e
a, c, 21
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1’ we have for tl 20

c,t

21
(e -l-cztl)} 20,

(c) Recalling (30) that 2/a, 2t
272

1
1) - o

2

c,.T c. .t
W&ﬁZeZIRﬁeZL

: _ c,t c,t
since for t'2 0 we have g(t) 2 0, where g(t) = t(e ©~ -1) - (e -l-czt)/cz.

This follows from g(t=0) = 0 and g'(t) 20 V t 2 0.
(¢) Thus, F(tl) 20 Vv tl 2 0, whence follows the lemma. Q.E.D.

As an immediate consequence of Lemmas 1 and 2 we have Theorem 1.

THEOREM 1: For T 2 7 > 0, we have max(Jo,Jl) 2 JB with
strict inequality holding for T > Ty

LEMMA 3: Assume that R=1 and T 2 t,. Then we have AJl—S 20

1
with AJl—S >0 for R> 1.

PROOF :

(a) We consider for t =220

c,t
F(t) = t{(Re ' -1)/c, - %K1y /K + RERPXT - 1 - Re/R) /K2

v

c,t
- R(e ! “l-e, T/R)/c2 + (R fn R)/ (e c)) + (R-1)/c3 .

Then we have

F(t=0) = R(R B-1)/K2 + (R 2n R)/(cje,) + (R-1)/cZ = £(R) 2 0

with £f(R) >0 for R > 1. This follows from f(R=1) = f'(R=1) = 0 and

£ (R) - (1—K"8)/(clc2R).

B~-30




Yt tew oot

,’}?(‘éﬁm_:z::.l}:ﬁ - T it N - EEE Y et .- A I SR - - L7 e

c
(b) Computing F'(t) = Rgt(kpe 1t e ) 2 R%t(e “f Kt

) >0 for R21
and t > 0, we see from (a) that F(t3R) 20 withk F(t:R) >0 for R> 1.

t
-1)/c

c

(¢) We now consider G(t) = (Re 1

- (B%Xt-1)/K. It follows that

G(t=0) = 1/c, + R/c, ~ K'/K = g(R) 2 0, since g(R=1) =0 and g'(R) =

8 1 xt

(l-R )/c Also G'(t) = R*(R"e ) 2 0. Hence, G(t) 20.

c,F(T;R) 2 0

o
(d) Recalling that rlla1 2T, we have by (c) that AJl_ @,8,C,

with F(T;R) >0 for R> 1. Q.E.D.

From Lemma 3 follows Theorem 2.

THEOREM 2: Assume that R 1 and T 2 T, Then max(Jo,Jl) =27

, S
with inequality holding for R > 1.

Thus, we see from Theorems 1 and 2 that the optimal control must be

constant and equal to either 0 or 1 for 0 £ t £ T. The results shown in

Table II and Figures 2 and 3 then follow from consideration of AJl_0 (see
equation (35)).
4. Development of Optimal Policy for Problem 2.

In thie case we consider (1) with the criterion function J 2 v, xk(T)

k=1

2
2 wkyk(T). Thus, for this problem the state space (considering time to be
k=1

an additional state variable) is five dimensional.

4.1. Necessary Conditions of Optimality.

The Hamiltonian [2] is given by (using (2))
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so that the maximum principle yields the extremal control lar:
1 for S¢(t) >0,

P*(t) =
0 for S¢(t) <0,

where S¢(t) denotes the ¢-switching function defined by

s¢(t) = cl(-ql)y1 - cz(-qz)yz.

(39)

(40)

The adjoint system of equations (again using (2) for convenience) is given by

(assuming that xi(T) > 0)

pi(t) =V for 0St=T with {i=1,2,

and

q = a,v, + ¢:ciqi with qi(T) = -wy for 1= 1.2
Computing the first two time derivatives of the switching function
04(t) = -aje;vqy; + 2,005,
§;(t) = alclvlyl(cl¢) - a2c2v2Y2(02(1"¢)),
we see that on a singular subarc we have [2], [6]
¥1/9y = 85e5¥5l @yeyvy)s

(-ql)/(alvl) = (-q2)/(a2v2),

with the singular control given by
¢S - c2/(cl+c2).

On such a singular subarc the generalized Legendre-Clebsch condition is

satisifed, since _Q_{ dzfgﬂ)} = a.c.v.y.(c,+c,) > 0.
' 3¢ [dtZ'3¢ 17117171772

(41)

(42)

(43)

(44)

(45)

(46)

For Problem 1 it was convenient to consider a '"reduced" state space of

t,rl

space of t, Xy» Xgs Vp» and Yyr It seems appropriate to point out the
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corresponding relationship between the adjoint variables in these two state
spaces. This is easily seen by considering the optimal return function (see

[2]), W, and the following transformation of variables

t=t, !

47
r, = xi/yi for 1 =1,2.
Then we have, for example (t) = w__ W ol so that we obtai
’ P18 Py ax (8) ~ or, ax; at we obtain
Py = )‘i/yi and q, = —riki/yi for 1 =1,2. (48)

It seems appropriate to point out that alternatively Problem 1 could have been
solved in the "full" state space of t, X X9 Y1 and Yy while Problem 2
cannot be solved in the "redur2d" state space. The latter follows from consid-
eration of (41) and the requirement (see (48) above) that pi/qi = -1/ri must

hold in order for the transformation (47) to be applicable.

4.2, Synthesis of Extremals.

In synthesizing extremals by the usual backwards construction procedure

it is convenient to consider

W a,c,v.y W W :
0y o PR IR b 0 S A 1 s,
S¢(T 0) azczvzyz(alvl){a cv f (azvz’ / (ulvl)}’ (49) }
2°272%2 §
and :
]
S¢(r) = a,0,V1Y; - a,C,VoY,, (50)
-]
where 1t denotes the "backwards' time defined by 7 =T ~ t and S¢ denotes
o
the "backwards" time derivative S¢ = dS¢/dT. We will omit most of the tedious

details of the synthesis of extremals because they are very similar to those

given in [14]. Without loss of generality we may assume that wll(alzl) 2

v, gazgzl, and then there are two cases to be considered:
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(€9 w1/ (alvl) = w2/ (azvz),

(11) wll(alvl) > wzl(azvz).

CASE I: wll(algl) = “2/(32!2217 i.e. = ka_,_!i for 1i=1,2.

P

In this case (49) becomes
S, (t=0) = a.c.v yf(w /a,v.){a,c,v yf/(a c.V Yf) -1}
¢ 27227271711 171°'1Y1" 272272 ’
whence follows the synthesis of extremals shown in Figure 4.
CASE 11: w,/(a;v,) > wziggzgzl.
In this case it follows from (39), (49), and (50) that for pf - yi/yg
%* =
2 azczvzl(alclvl) we have S¢(T) >0 and ¢*(t) =1 fo: :1& T ; 0. S:nce
bt f 2722 2 1
= ) 5V =)

S, (=0) K0 = S (1=0) <0, it follows that for ¢
¢ ¢ 8,c.v," 8, v, fa v,

we have S¢(T) <0 and ¢*(t) =0 for all T > 0.

There may be a change in sign of S¢(1) for c2w2/(c1w1) < pf <
* =
a2c2v2/(alc1v1). In this case ¢*(1t) =1 for O£t T and then
c. T a.c.v a.c.,v w w
f{1 1 11°) £ 171°1 1 f 2
§,(1) = a,c,v,y {—— e " -D(=Tp -1+ ) (=)o - )} (51)
¢ 2727272 <y 8,CoVy 3,CoV," "8 vy a,v,

It is clear that we must have S¢(T=Tl) <0, If S¢(1=11) < 0, then we

have a transition surface with =

1 (denoted as T¢) given by the smaller

of the two positive roots of G(T=r¢;pf) = 0, where G(T;pf) is given in

o
Table III. If S¢(T=T1) = 0, the singular subarc may be entered, and then

we have that Tl (denoted at TS) is given by the unique nonnegative root
of F(T=TS) = 0, where F(T) 1is given in Table III. We denote the corre-
f f f _°f

sponding value of p~ as Pg- Then there is no gwitch in ¢* for o~ > Pge

We state this as Theorem 3.

THEOREM 3: o%*(1) =1 for all v 2 0 when pf > pg.
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PROOF: Immediate by G(rsts;pf=p§) = F(t=ts) =0 and ac/apf > 0, since then
there is no solution to G(tzrl;pf) =0 for pf > pg. Q.E.D. P

S shown in Table III are developed as follows. First
-, T
. - . 1
assume that wll(alvl) = 1/c1. We consider F(1) = T + (1/c1 wll(alvl))e

The bounds on Tt

- - L} 1] ]
(1/c1 w2/(azv2)). Then clwl/(alvl) SF'(1)£1 and F'(7T) 20 for
wll(a1v1) = 1/c1, whence follow the bounds shown in Table 1II. Other develop-

ments are similar.
The above information immediately leads to the extremal field shown

in Figure 5 (see also Tables II and III).

4.3, Determination of the Optimal Fire-Support Polirny.

The optimality of the extremal fire-support policy developed above
follows according to the reasoning given in Section 3.3 by the uniqueness of

extremals. ;

5. Development of Optimal Policy for Problem 3.

In this case we consider (1) with the criterion functional

2 2
J, = [ v, X (T)]/[ W,V (T)].
3 kzl k'k kzl k'k

4.1, Necessary Conditions of Optimality.

The necessary conditions of optimality for Problem 3 are the same as

¢k b v mrn s

those for Problem 2 except that the boundary conditions for the adjoint variables ]
are different. Thus, (38) through (40) again apply to Problem 3. The adjoint :
system of equations (again using (2) for convenience) is given by (assuming

that xi(T) >0)

pi(t) = vi/D for 0sts=T with 1=1,2,

and (52)

* *
q; = ap; * ¢>iciqi with qi(T) = —wiJ3/D for 1i=1,2,
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Computing the first two time derivatives of the switching function
s¢\t) = -a;¢1P ¥, +3,8,P,Y,s (53)

we find that (44) through (46) again hold on a singular subarc. On such a

singular subarc the generalized Legendre-Clebsch condition 1s satisfied, since
8¢{dt Ge } = aevylegtey)/n > 0.

5.2. Synthesis of Extremals.

The synthesis of extremals is essentially the same as for Problem 2

(see Section 4.2 above) except that we have

1 131571 [ 2 ) [ 1)
S, (1=0) = J.a.c.v.y [ - —!/ (55)
¢ 372727272 J{azczvzyz aZ\ZJ ayv 1J}
and
S¢(1) = (alclvlyl—azczvzyz)/D. (56)

It follows that

f
W a.c.v.y w
fl 1 1111 2
S (¥ {J332°2V2y2[ av 1] [ f] - [a v
a,c 2V9Y 2°2

Ve

T
+ J (alclvlyl(0)—a2c2v2y2(o))d0}/b. (57
0

5.3 Determination of the Optimal Fire-Support Policy.

As for Problem 2, the optimality of the excremal fire-support policy
developed above follows according to the reasoning given in Sectiom 3.3 by

the uniqueness of extremals.
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6. Future Research Directions.

In this section we discuss possible future research suggested by the
work reported in this appendix. First of all there remains computational
work to be done on Problems 2 and 3. It should be recalled that in Figures 2
through 5 we qualitatively sketched the optimal fire~support policies for
Problems 1 through 3. It was not possible, however, at this time to report
actual numerical computations. We would recommend doing this in the future,
Of particular interest would be the comparison of switching times in the
optimal fire-support policies for Problems 2 and 3 for wll(alvl) > wzl(azvz)
to see how model parameter values and force levels affect the timing of
changes in fire distribution.

Secondly, it is of interest to study the dependence of the structure
of the optimal time-sequential fire-support policy for the W fire-support
units (see Figure 1) upon the nature of the criterion function J = Q(zf,x{),
where xT

~f

have examined the consequences for optimal fire-support allocation of several

denotes (xi,x;) with xi = xl(T), etc. In the work at hand we

-urctional forms for the criterion functional. Based on this work it appears
worthwhile to examine other functional forms for Q(ﬁf’Xf)' It seems reason-
able on military grounds to require that

jﬂ%,> 0 and iﬁ%—< 0 for all xi,yi 2 0.
axi Byi
Furthermore, one might postulate either of the following functional torms for

.l-
Q(xf,yf) :

(@) Qzeyp) = F(xp) - 6(y0),s

or

1.Pugh and Mayberry [11] have suggested using the ratio of aggregated force
values.

B-37




SRR RS TR R oS ML Pl s i S et SR SE T S AR S N 5 TR T e T o R L
~

s
Y
z
x
%
]
¥
E

®) Qlagag,) = Flxp) /G-

It is of interest to study cases in which F (and/or G) is a .

§ (A) concave function,

B R aaaan vty G iyttt g

or (B) convex function,
or (C) quasi-concave function,
or (D) quasi-convex function. :

To give a concrete example, as a representative concave function one might

consider i
2 -Giyf ?
G(zf) = ) Bi(l-e )/ai. ;
i=1
After the dependence of che structure of the optimal time-sequential ;

fire-support policy upon the functional form of the terminal return Q(ﬁf’lf)
has been studied for the above problem (1), it would seem appropriate to
consider a problem like a one-sided version of the "Tactical Air-War Campaign’

{see Appendix E of [18]) or the Isbell-Marlow fire~distribution problem (see

PR i e PO RN

PPN,

of the effects on optimizing tactical decisions of the quantification of mili-

|

l

H

g 112], [20]). Such a research program would lead to a better understanding
E

%

i tary objectives and of the valuation of military resources. This in turn
H

IR

would result in a better understanding of the optimization of combat dynamics.

FORee oty e

In particular, this would hopefully lead to a better understanding of quanti-

.

tative justification for time-sequential fire-support allocation rules in

terms of different quantifications of military objectives.

7. Discussion.

In this section we will discuss what we have learned about the dependence

of the structure of optimal time-sequential fire-support policies upon the
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[ quantification of military objectives. We studied this dependence by considering
. three specific problems (each corresponding to a different quantification of
objectives (i.e. criterion functional)) for which solutions were developed.

We have pointed out above (see Section 2.4) the need for future computational

oo t

work on these problems. Thus, our remarks here must be limited to a qualita-

tive comparison of the optimal fire-suapport policies.

5 The most significant finding is that essentiaily the entire structure

. of the optimal time-sequential fire-support policy may be changed by changing

the quantification of military objectives. We feel that there are basically
two types of military strategies: (1) obtain a "local" advantage and (2)
obtain an "overall" advantage. The criterion function for Problem 1 (i.e.

f- J1 = % akxk(T)/yk(T), a weighting of force ratios in the two separate combat

g k=1
7 areas) reflects the striving to attain a "local" advantage (referred to above

g

as a "breakthrough" tactic). The corresponding optimal fire-support policy

LAl

was to concentrate all supporting fires on one of the enemy units (the quanti-

tative determination of this is given in Table II) for the entire period of

%

fire suggor:T

On the other hand, the criterion functionals for Problems 2 and 3

2 2

(L.e. J, = X v xk(T) - X w, v, (T), the difference between overall military
2 k=1 k k=1 k’k

worths (computed assuming linear utilities) of forces at the time when support-

o5

.

LTS Sy

2
4
o

2 2
ing fires must be lifted, and J3 = [ 2 vkxk(T))/[ 2 wkyk(T)], the ratio
k=1 k=1

RPN R0 ey ooy Y.

+It should be pointed out that perfect information has been assumed for the
state variables (i.e. enemy force levels). In the real world where this
assumption may not hold, this policy need not be optimal. Other factors that
would temper the use of such a policy in the real world are (1) the need to
"pin down'" enemy forces with supporting fires (i.e. suppressive effects) and
(2) the giving of information to the enemy as to exactly where his defenses
will be attacked by the concentration of preparatory fires.
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of overall military worths) reflect the striving to attain an "overall”

advantage (referred to above as an "attrition" tactic which aims to wear down
the cverall enemy strength). The corresponding optimal fire-support policies
for Problems 2 and 3 were qualitatively similar and could involve a splitting

of supporting fires between the two enemy troop concentrations. This property

of the optimal fire-distribution policy is not present in the solution to
Problem 1 and was anticipated in our earlier work on optimal fire distribution
against enemy target types which undergo attrition according to a "linear-law"
process (see Section 2.1 above) [13], {14]. The criterion functional for this
earlier work was the difference between overall military worths of survivors.
Thus, we see that the nonconcentration of fires on particular target types is
characteristic of optimal time-sequential fire distribution over enemy target
types which undergo attrition according to a "linear-law" process with the

objective of attaining an "overall' advantage.

We saw that the structures of the optimal time-sequential fire-support
policies for Problems 2 and 3 were qualitatively similar, although the timing
of changes in the allocation of supporting fires could be appreciably different.
Additionally, the functional dependencies of these switching times for the two
problems were different. On thc other hand, for the particular valuation
(computed according tc linear utilities) of forces in which each enemy target
type was valued in direct proportion to its rate of destruction of value of
the opposing friendly forces, the optimal policies were exactly the same for
both problems (see Table II). In this case the optimal fire-support policy
took a particularly simple form (see Policy A as given by (6)).

When enemy survivors were not valued in direct proportion to their rate

of destruction of friendly value, the optimal policy was more complex (see
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Tables II aad III or Figure 5). In this case for purposes of describing the
optimal fire-support allocation rule, the planning horizon could be considered
to be divided irto two phases. Moreover, the lengthe of these two phases
depended on different factors for these two problems. When the planning
objective was the maximization of the difference in total military worth of
the two forces at the end of the "approach to contact," the length of, for
example, PHASE II depended only on the attrition-rate coefficients and enemy
force levels and was independent of the attacking-force force levels. However,
when the ratio of the total military worths of the two forces was considered
(i.e. for Problem 3), the length of PHASE II also depended directly on the
attacking friendly force levels.

Thus, we see that (at least for the relatively simple fire-support
a2llocation problem considered here) the nature of the optimal time-sequential
allocation policy is strongly influenced by the quantification of military
cbjectives. We hope that as a result of our investigation reported here a
better understanding of optimal time~sequential fire-support strategies (in
particular, how they depend on combatant objectives) has been developed. We
conclude that more work needs to be done on the identification of criteria for
making tactical decisions and on the quantification of such criteria. We
would propose to ONR for future research the further study of the influunce
of different quantifications of military objectives on optimal time-sequential

fire-support strategies.
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APPENDIX C: Optimization of Time-Phased Combat

1. Introduction.

In this appendix we will briefly consider methodology for the development
of optimal time-sequential fire-support pclicies when there are different combat
dynamics (i.e. Lanchester-type equations) in different "phases" of a battle.

We will consider cases in which the system equations (i.e. the right-hand sides
of the differential egquation combat model) are discontinuous at an interior
point of the planning horizon det.rmined by a given condition on the state
variables being satisfied (see pp. 104-105 of [1]). We have chosen to call
this situation "time-phased" combat. Such a situation occurs when a breakpoint
(determined by a given condition beiween the state variables being satisfied)
is reached.

We will briefly outline how to deternine the optimal time-sequential
policy (see pp. 104-105 of {1]) for such a model. We will present some pre-
liminary results here and would propose to ONR the further study of these
problems as a future research task. We will consider the optimal allocation
of supporting fires for an asszult by friendly infantry forces within the con~-
text of the scenario previcusly described in Appendix A. Two situations that
we wili consider here are

(a) breakpoint for the defenders,

¢Y) breakpoint for the attackers.

2. Breakpoint for Defenders.

Let us consider the attack by heterogenecus X ground forces (infantry)
upon the static defensive position of heterogeneous Y ground forces along

a3 "front." The basic scenario of this situation has been described in detail

N ot m

P




in Section 6.2 of Appendix A and need not be repeated here. The combat

situation is shown diagrammatically in Figure 1.

If we consider "breakpoints" for the defending ground combat unitst

then our basic c.mbat optimization problem becomes

2 2
maximize { ) vkxk(tf) -
k

$;(t) kel =1

with stopping ruie: t_ - T = 0,

f
dx -a,¥4 for
subject to: 75% =
(battle dynamics) 0 for
dy

i
dt bjcqyy for

Xq0¥y 20

) wkyk(tf)}.

i
Yi > yBP’
i
vy * Yp°
)

i=1,2,

(State Variable Inequality Constraints)

¢1 + ¢2 =1 and ¢i 20 for i=1,2 (Control Variable Inequality Constraints),

wiicre all synbols are as defined in Appeudix A (see Section { of Appendix A).

It will be convenient to consider the single control variable ¢ defined by

¢ = ¢, sothat ¢, =(1-¢) and

0=¢ =1, (2)

For T < +» it follows that we will always have yi(t) >0 for 1i=1,2.

Thus, the oaly state variable inequality constraints (SVIC's) that must be con-

sidered are x, 2 0. However, let us further assume that the attacker's infan-

i

try force levels are never reduced to zero. This might be militarily justified

vn the grounds that X would never attack the Yi position if his attacking

X, forces could not survive the "approach to contact.”" Moreover, we will

i

relax this assumption in the next section.

1-In other words, a defending unit becomes ineffective upon reaching a given

force level.
c-2
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Figure 1. Diagram of Time-Sequential Fire-Support Problem

for an Attack of Friendly Forces.

Cc-3

:

w—te

B T

v v




— -

Let us now briefly outlire the necessary conditions of optimality (see
[1], [3], or [5]) for the above optimal control problem (1). We will see
that the basic structure of the optimal time-sequential fire-support policy
developed in Section 6.2 of Appendix A is modified "near a breakpoint." We
hope to give a more complete treatment of such problems in the future.

For convenience, let us focucs on the case in which Yl reaches its

"breakpoint."” This happens at t; when

(1)

1
U = yl(tl) ~ Ygp = 0. (3)

In the development of necessary conditions of optimality it is convenient to

define two phases of combat: PHASE I during which Y4 > yi for 1i=1,2,

BP

We denote the Hamiltonian

and PHASE II during which ¥y = yép and Yy > ygp.

of PHASE I as H(l) and similarly for H(z).

During PHASE I the Hamiltonian is given by [1] (using (2))

2
1

so that the maximum principle yields the extremal control law

‘ 1 for S¢(t) >0,
% (t) = l (5)
0 for S¢(t) <0,

where S¢(t) denotes the ¢~switching function defined by
S¢(t) = ¢;(=q,)y; - ¢,(-9,)y,. (6)

The adjoint system of equations for th.. dual variables (again using (2) for
convenience) is given by (assuming that X; > 0)
= Sts
pi(t) vy for 0=t=T,

and « )
q; = a;vy + ¢iciqi with qi(T) = v, for 1 =1,2.
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Computing the first two time derivatives of the switching function (6)

S4(t) = —aje,viyy + a,cv,y), (8

S¢(t) = alclvlyl(c1¢) - azczvzyz(c2(1‘¢))s (9)

we see that on a singular subarc we have [1]

Y1/, = 23¢9/ (3109vy)s (10)
(-q;)/(a;vy) = (-qz)/(azvz), (11)

with the singular control given by
¢g = cz/(c1+c2). (12)

On such a singular subarc the generalized Legendre-Clebsch condition is
idzﬁ}=
satisfied, since 8¢{3E2(8¢) alclvlyl(cl+c2) > 0.

During PHASE II when Y1 = yip and Yy the Hamiltonian is given

2
> Ygp
by

w2 - “P,a,y, = 4.¢c.y. = q,(1-¢)c,y (13)
27272 177171 2 272°
The maximum principle again yields the extremal control law (5). The adjoint

system is given by (assuming that xg > 0)

Pi(t) =v, for 0=t=T,
. *
q = ¢ ¢.4q; with ql(T) =V (14)

and

9

*
a,v, + (1-¢ )c2q2 with qz(T) = -y

Computing the first time derivative of the switching function (6)

S¢(t) = -g,.C,V

269¥2Y2 < 0»

we see that singular subarcs are impossible during PHASE II.

C-5
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At a juncture (defined by (3)) betwzen the two "phases” of battle, we

have (see pp. 104-105 of [1])
-, +

- +
q,(t;) = q,(ty),
and
) =p,(th for 1=1,2
Pyity) = Pyl or 180
The condition that H(l)(ti) = H(z)(ti) (recalling our assumption that
xl(T\ > 0) vyields

- - + +
$*(E))S, (6]) = $R(E)S, (£]) + avyy, > 0,
so that

¢*(t;) =1 and Sa(tI) > 0.

We also obtain from {(6), (15), and (16) that

- +
S¢(t1) S¢(tl) + clylﬁ.

By (18), (19), and (20) we have

+ +
- = - Y1 Y
yl(c1€ alvl) S¢(t1¢‘1 ¢*(t1,} 20,

so that

£E2 alvllc1 > 0.

From (15) and (21) we see that the value of members of the Y, force is

1

decreased when the unit becomes "ineffective."

Thus, we have proven

15)

(16)

Qan

(18)

(19)

(20)

(21)

THEOREM 1: In the case in which the Y1 forces reach their

"breakpoint" and become ineffective, the optimal time-
sequential policy for W 1is to concentrate all

supporting fires on Y (at least for some time

1

immediately preceding the reaching of the "breakpoint").

C-6




In other words, the singular subarc is nonoptimal for reaching the Yl
"breakpoint.” Militarily this means that all supporting fires are concen-
trated on Y, in order to make the unit "break" even when the W fire~

support units cause attrition to Yl according to a "linear-law" process.

Thus, we have another (see [9]) quantitative justification of one of the most
significent and oft-quoted of Napoleon Benaparte's sayings (see p. 117 of [4])--

"The principles of war are the same as those of a siege; fire must be concen-

trated at one point."

3. Breakpoint for Attackers.

We will now comsider the case in which one of the attacking units
"breaks." Let us consider the same scenaric as considered in the previous
section. We assume that when the attacking Xi force reaches its "break-
point," it abandons the attack and withdraws at a rate r, until it totally

disengages the Yi force.+ Then our combat optimization problem becomes

2 2

maximize { § wv,x (t.) - ) wy (t)}, ;
6,(8) kel A N 4 ;
with stoppi te:te_-1=0 *
pping rule: ’ t. , :
i
subject to: ~-a for x, > xi ;
: 174 1~ *pp -
dx; 1 |

i _) - <
it o,aiyi r for 0 < X ® Xpps |
i
0 for X, = 0, %
dy, %

Tl -¢iciyi for i=1,2,

xp¥; 20, ¢ +é, =1, and ¢, 20 for i=1,2

fDuring this disengagement time, the fire effectiveness of the defending Yi
force is modified by the factor «.

H‘We assume that X will not launch the attack if both his unics will be
repulsed by the Y forces.
c-7
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satisfied. As above, it will sometimes be convenient to consider the single
control variable ¢ defined by (2). -

Let us now briefly outline the development of the necessary conditions
of optimality for the above optimal control problem (22). We will see that
the optimal time-sequential fire-support policy depends on the "outcome" of
battle and that "local optima" are yielded by the necessary conditions. We
hope to give a more complete treatment of such problems in the future. For
now we will partially synthesize extremals in one special case.

For convenience, let us focus on the case in which X. reaches its

1
"breakpoint.”" This happens at t when

o - x,(t) - x0p = 0. (23)

The disengagement of the X, forces becomes complete at t2 defined by

1
v = x () = 0. (26)

Consequently, in the development of necessary conditions of optimality it is

convenient to define three phases of combat: PHASE I durirs which Xy > X;P

1 2
for i = 1,2, PHASE II during which O < X1 = Xpp and X, > Xpp? and
PHASE 1I1I during which X = 0 and Xy > xgp. We denote the Hamiltonian of
PHASE I as H(l) and similarly for H(z) and H(3).

During PHASE I the Hamiltonian is given by [1] (usiang (2))

2
1
- - 121 Pyas¥y ~ 9y8cyy - 4p(1-#)c,y,. (25)

The maximum principle again yields (5) as the extremal control law, and the

adjoint equations are

c-8
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p;(t) = constant,
and (26)
. *
q; = &P, + ‘iciqi vith qi(T) -, for 41 =1,2.
Computing the first two time derivatives of the switching function (6)

S¢(t) = =8,61P1Y; + 2,600,758 (27)

S¢(t) = alclplyl(cl¢) - azczpzyz(c2(1—¢)), (28)
we see that on a singular subarc we have

¥1/9, = a,c0p,/(a1eqp), (29)

(-a,)/(a;p)) = (-a,)/{a,p,), (30)

with the singular control given by
=~ i~ AY
bg = o,/ (2 *e,). (31

On such a sinéular subarc the generalized Legendre-Clebsch condition is

satisfied, since _3_{Q:z@§%} = a.c,p,y,(c,+c,) > 0.
’ 3¢ ldt- ‘3¢ 1171171 72

< xl and x, > xz the Hamiltonian is

During PHASE 11 when 0 < x BP 2 BP

1
given by

(@

= -p,(0a,y,+r,) - pyay, = qée,y; - q,(1-8)c,y,. (32)
The maximum principle again yields the extremal coritrol law (5). The adjoint

system is given by

pi(t) = constant,

*
q, = 0a;p, + ¢ ¢, with ql(T) = -y, (33)
and

.

%
9, = a,p, + (1-¢ )c2q2 with qz(T) =W,

c-9
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Computing the first two time derivatives of the switching function (6)
S¢(t) = —oa;c.py; + 3,0P,Y,, (34)

S4(t) = aajeip1y (c;0) = a,c,p,¥,(c,(1-4)), (35)

we see that on a singular subarc we have

¥1/¥y = a,e,py/ (a3 eip,), (36)

(pa)/(@ap)) = (-q,)/(ap,), (37)
with the singular control again given by (31). The generalized Legendre-
Clebsch condition is readily seen to hold.

At juncture time t. (defined by (23)) between PHASE I and PHASE II

1
of battle, we have (see pp. 104-105 of [1])

pL(£]) = p (£]) +E, (38)

pz(tz) = pz(tt), (39)
and

q () = qi(f;) for i =1,2. (40)

The condition that H(l)(ti) = H(z)(tt) yields

— + - -
£ = p (£ {r,/(a;y)-(1-)}. (41)
During PFASE III when X, = 0 and X, > xgp the Hamiltonian is given by
B3 = pay, - qery, - g, (1-0)e,y 42)
282Y2 T %%y T 9 272

with the maximum principle again yielding the extremal control law (5). Tte

adjoint equations are
pi(t) = constant,

. *
q; = ¢ c19; with ql(T) = -, (43)

Cc-10
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and

. *

q, = a,p, + (1-¢ )czq2 with ‘(T) = v,
Singular subarcs are impossible, since §¢(t) = ~2,C,P,¥, < 0.

At juncture time ¢, (defined by (24)) between PHASE II and PHASE IIl

2

of battle, we have
p(t]) = (tD) = p. (&), and q,(t]) = q.(t}) for i=1,2. (44)
1'°2 » Palty 2%y’ 1\520 = 4iY 2Ee
The condition that H(Z)(c;) = u‘3)(c;) yielids

In synthesizing extremals by the usual backwards sweep method (see [7]
or [8]), there are three cases to be considered (we always assume that

f 2
X, xz(T) > &p 80 that pz(t) = v2).

£ 1
(1) x; > xgps
£ 1
(2) 0< Xy £ 3 Xpps
(3) xi = 0.

[

For Case 1: xi > X the optimal fire-support policy 1s the same as

3p’

that for Problem 2 of Appendix A.

£ 2
For Case 2: 0 < X3 = Xop?

of both PHASF I and also PHASE II. Singular subarcs are possible during both

we have pl(t) =V The battle consists

phases. The relative position of "singular surfaces" in the state space for
the two phases of battle depends on the parameter o (e.g whether or not
@ > 1). Details may be worked out by the usual backwards sweep method.

f
1

consists of PHASE 1, PHASE 1I, and PHASE III. There are no singular subarcs

For Case 3: x

= 0, we have pl(t) =0 for 0 <t <T. The battle

Cc-11
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in the solution when xi = 0. If w, = kaivi (i.e. enemy survivors valued in

direct proportion to their rate of destroying friendly value), then
S,(r=0) = ka,c,v yf{yf/yf -a,c v,/(a;c,v.)}. (46)
¢ 1€1Y1521179273,¢V27 1819

The usual arguments now yield that

¢*(t) =0 for 0=t =T when yi/yg 3 p;,

f

f, f
where /(al 1 l) For )1/y2 > pps we have

f
°p T 22%"2
$*(t) =1 r1Oor OXKTCX T

where T =T - t denotes .lie '"time to go" in the battle and

f, £ 2
1, = ka,cpv /(a2c2v2){y1/y2 a,¢, 2/(a vl);. It may be shown that

1"1'1
f
Tz t2 = X = 0, where tz is given by
o 1 6t o
ax, + (1—u)xBP rl(tz—tl)— (1l-e )aalyl/c1 = 0,

and

a yo
tl = ;%— n { 1 }
1 )

3,y ¢y (g x BP

Thus, we see that the structure of the optimal time-sequential fire-
support policy depends on the "outcome" of battle (e.g. the value of xi).
The dependence of the structure of the optimal policy on initial force levels
is complicated and remains to be determined in the future. We have seen that
one must consider "breakpoints' and different combat dynamics in different
phases ~f hattle to insure 'realistic" combat situations (such as force levels
remaining nonnegative). The determination of the optimal time-sequential fire-
support policy for such problems is much more complicated than that for prob-
lems previously considered by us. We hope to give this important subject

further consideration in the future.
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4. Summary.

In this appendix we hav briefly considered the determination of
optimal time-sequential fire-support strategies for battles with different
coubat dynamics in different "phases" of battle. An important instauce in
which one must consider such a model is when "breakpoints" (see [2] or [6])
are considered for units. In such cases we have seen that the determination
of the optimal policy is much more complicated than that for the problems
that we have previously considered (see, for example, [7], [8], [9]). More-
over, the structure of the optimal policy was different for the problems
considered here than that for the version previously considered in Appendix A.

Thus, the models considered here do lead to a significantly different

structure for optimal time-sequential allocation policies than those we have

KL
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Esaridid

s
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previous considered. "Global" considerations (i.e. which end states of

battle can be reached by extremals from a given point in the initial state

space) appear to be especially important in developing solutions to such

problems. We have only bri~fly considered these problems here and hope to

give them more detailed treatment in the future,
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